Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose weight is a power of 2.
Examples:
Input:
Output: 1
Only the weight of the node 4 is a power of 2.
Approach: Perform dfs on the tree and for every node, check if its weight is a power of 2 or not, if yes then increment the count.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; int ans = 0; vector< int > graph[100]; vector< int > weight(100); // Function to perform dfs void dfs( int node, int parent) { // If weight of the current node // is a power of 2 int x = weight[node]; if (x && (!(x & (x - 1)))) ans += 1; for ( int to : graph[node]) { if (to == parent) continue ; dfs(to, node); } } // Driver code int main() { // Weights of the node weight[1] = 5; weight[2] = 10; weight[3] = 11; weight[4] = 8; weight[5] = 6; // Edges of the tree graph[1].push_back(2); graph[2].push_back(3); graph[2].push_back(4); graph[1].push_back(5); dfs(1, 1); cout << ans; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static int ans = 0 ; @SuppressWarnings ( "unchecked" ) static Vector<Integer>[] graph = new Vector[ 100 ]; static int [] weight = new int [ 100 ]; // Function to perform dfs static void dfs( int node, int parent) { // If weight of the current node // is a power of 2 int x = weight[node]; if (x != 0 && (x & (x - 1 )) == 0 ) ans += 1 ; for ( int to : graph[node]) { if (to == parent) continue ; dfs(to, node); } } // Driver Code public static void main(String[] args) { for ( int i = 0 ; i < 100 ; i++) graph[i] = new Vector<>(); // Weights of the node weight[ 1 ] = 5 ; weight[ 2 ] = 10 ; weight[ 3 ] = 11 ; weight[ 4 ] = 8 ; weight[ 5 ] = 6 ; // Edges of the tree graph[ 1 ].add( 2 ); graph[ 2 ].add( 3 ); graph[ 2 ].add( 4 ); graph[ 1 ].add( 5 ); dfs( 1 , 1 ); System.out.println(ans); } } // This code is contributed by // sanjeev2552 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static int ans = 0; static List<List< int >> graph = new List<List< int >>(); static List< int > weight = new List< int >(); // Function to perform dfs static void dfs( int node, int parent) { // If weight of the current node // is a power of 2 int x = weight[node]; bool result = Convert.ToBoolean((x & (x - 1))); bool result1 = Convert.ToBoolean(x); if (result1 && (!result)) ans += 1; for ( int i = 0; i < graph[node].Count; i++) { if (graph[node][i] == parent) continue ; dfs(graph[node][i], node); } } // Driver code public static void Main(String []args) { // Weights of the node weight.Add(0); weight.Add(5); weight.Add(10);; weight.Add(11);; weight.Add(8); weight.Add(6); for ( int i = 0; i < 100; i++) graph.Add( new List< int >()); // Edges of the tree graph[1].Add(2); graph[2].Add(3); graph[2].Add(4); graph[1].Add(5); dfs(1, 1); Console.WriteLine(ans); } } // This code is contributed by shubhamsingh10 |
Python3
# Python3 implementation of the approach ans = 0 graph = [[] for i in range ( 100 )] weight = [ 0 ] * 100 # Function to perform dfs def dfs(node, parent): global mini, graph, weight, ans # If weight of the current node # is a power of 2 x = weight[node] if (x and ( not (x & (x - 1 )))): ans + = 1 for to in graph[node]: if (to = = parent): continue dfs(to, node) # Calculating the weighted # sum of the subtree weight[node] + = weight[to] # Driver code # Weights of the node weight[ 1 ] = 5 weight[ 2 ] = 10 weight[ 3 ] = 11 weight[ 4 ] = 8 weight[ 5 ] = 6 # Edges of the tree graph[ 1 ].append( 2 ) graph[ 2 ].append( 3 ) graph[ 2 ].append( 4 ) graph[ 1 ].append( 5 ) dfs( 1 , 1 ) print (ans) # This code is contributed by SHUBHAMSINGH10 |
Javascript
<script> // Javascript implementation of the approach let ans = 0; let graph = new Array(100); let weight = new Array(100); for (let i = 0; i < 100; i++) { graph[i] = []; weight[i] = 0; } // Function to perform dfs function dfs(node, parent) { // If weight of the current node // is a power of 2 let x = weight[node]; if (x && (!(x & (x - 1)))) ans += 1; for (let to=0;to<graph[node].length;to++) { if (graph[node][to] == parent) continue dfs(graph[node][to], node); } } // Driver code // Weights of the node weight[1] = 5; weight[2] = 10; weight[3] = 11; weight[4] = 8; weight[5] = 6; // Edges of the tree graph[1].push(2); graph[2].push(3); graph[2].push(4); graph[1].push(5); dfs(1, 1); document.write(ans); // This code is contributed by Dharanendra L V. </script> |
1
Complexity Analysis:
- Time Complexity: O(N).
In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) for N nodes in the tree. Therefore, the time complexity is O(N). - Auxiliary Space: O(1).
Any extra space is not required, so the space complexity is constant.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!