Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount substrings made up of a single distinct character

Count substrings made up of a single distinct character

Given a string S of length N, the task is to count the number of substrings made up of a single distinct character.
Note: For the repetitive occurrences of the same substring, count all repetitions.

Examples:

Input: str = neveropen”
Output: 15
Explanation: All substrings made up of a single distinct character are {“g”, “e”, “ee”, “e”, “k”, “s”, “f”, “o”, “r”, “g”, “e”, “ee”, “e”, “k”, “s”}.

Input: str = “abaanndscx”
Output: 12

Naive Approach: The simplest approach to solve this problem is to generate all substrings from the given string count the number of substrings that consist of a single distinct character only.
Time Complexity: O(N3)
Auxiliary Space: O(1)

Effective Approach: Follow the steps below to optimize the above approach:

  • Initialize a variable, say ans, to store the count of such substrings.
  • Iterate over the characters of the string and check if the previous character, say pre, is the same as the current character or not.
  • While the previous and current characters are found to be the same, increment subs and add to the answer.
  • If the previous and current characters are found to be different, then reinitialize subs to 1.

Below is the implementation of the above approach:

C++




#include <iostream>
using namespace std;
 
  // Function to count the number
  // of substrings made up of a
  // single distinct character
  void countSubstrings(string s)
  {
     
    // Stores the required count
    int ans = 0;
 
    // Stores the count of substrings
    // possible by using current character
    int subs = 1;
 
    // Stores the previous character
    char pre = '0';
 
    // Traverse the string
    for (auto& i : s)
    {
       
      // If current character is same
      // as the previous character
      if(pre == i)
      {
         
        // Increase count of substrings
        // possible with current character
        subs += 1;
      }
      else
      {
         
        // Reset count  of substrings
        // possible with current character
        subs = 1;
      }
 
      // Update count of substrings
      ans += subs;
 
      // Update previous character
      pre = i;
    }
    cout << ans <<endl;
  }
 
// Driver code
int main()
{
     
    string s = "neveropen";
    countSubstrings(s);
         
    return 0;
}
 
// This code is contributed by splevel62.


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG
{
 
  // Function to count the number
  // of substrings made up of a
  // single distinct character
  static void countSubstrings(String s)
  {
     
    // Stores the required count
    int ans = 0;
 
    // Stores the count of substrings
    // possible by using current character
    int subs = 1;
 
    // Stores the previous character
    char pre = '0';
 
    // Traverse the string
    for(char i : s.toCharArray())
    {
       
      // If current character is same
      // as the previous character
      if(pre == i)
      {
         
        // Increase count of substrings
        // possible with current character
        subs += 1;
      }
      else
      {
         
        // Reset count  of substrings
        // possible with current character
        subs = 1;
      }
 
      // Update count of substrings
      ans += subs;
 
      // Update previous character
      pre = i;
    }
    System.out.println(ans);
  }
 
// Driver Code
public static void main(String[] args)
{
    String s = "neveropen";
    countSubstrings(s);
}
}
 
// This code is contributed by souravghosh0416.


Python3




# Python3 Program to
# implement the above approach
 
# Function to count the number
# of substrings made up of a
# single distinct character
 
 
def countSubstrings(s):
 
    # Stores the required count
    ans = 0
 
    # Stores the count of substrings
    # possible by using current character
    subs = 1
 
    # Stores the previous character
    pre = ''
 
    # Traverse the string
    for i in s:
 
        # If current character is same
        # as the previous character
        if pre == i:
 
            # Increase count of substrings
            # possible with current character
            subs += 1
        else:
 
            # Reset count  of substrings
            # possible with current character
            subs = 1
 
        # Update count of substrings
        ans += subs
 
        # Update previous character
        pre = i
 
    print(ans)
 
 
# Driver Code
s = 'neveropen'
countSubstrings(s)


C#




// C# Program to
// implement the above approach
using System;
class GFG {
 
  // Function to count the number
  // of substrings made up of a
  // single distinct character
  static void countSubstrings(string s)
  {
     
    // Stores the required count
    int ans = 0;
 
    // Stores the count of substrings
    // possible by using current character
    int subs = 1;
 
    // Stores the previous character
    char pre = '0';
 
    // Traverse the string
    foreach(char i in s)
    {
       
      // If current character is same
      // as the previous character
      if(pre == i)
      {
         
        // Increase count of substrings
        // possible with current character
        subs += 1;
      }
      else
      {
         
        // Reset count  of substrings
        // possible with current character
        subs = 1;
      }
 
      // Update count of substrings
      ans += subs;
 
      // Update previous character
      pre = i;
    }
    Console.WriteLine(ans);
  }
 
  // Driver code
  static void Main() {
    string s = "neveropen";
    countSubstrings(s);
  }
}
 
// This code is contributed by divyesh072019.


Javascript




<script>
    // Javascript Program to implement
    // the above approach
     
    // Function to count the number
    // of substrings made up of a
    // single distinct character
    function countSubstrings(s)
    {
 
      // Stores the required count
      let ans = 0;
 
      // Stores the count of substrings
      // possible by using current character
      let subs = 1;
 
      // Stores the previous character
      let pre = '0';
 
      // Traverse the string
      for(let i = 0; i < s.length; i++)
      {
 
        // If current character is same
        // as the previous character
        if(pre == s[i])
        {
 
          // Increase count of substrings
          // possible with current character
          subs += 1;
        }
        else
        {
 
          // Reset count  of substrings
          // possible with current character
          subs = 1;
        }
 
        // Update count of substrings
        ans += subs;
 
        // Update previous character
        pre = s[i];
      }
      document.write(ans);
    }
     
    let s = "neveropen";
    countSubstrings(s);
   
</script>


Output: 

15

 

Time Complexity: O(N)
Auxiliary Space : O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments