Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount subsequences with same values of Bitwise AND, OR and XOR

Count subsequences with same values of Bitwise AND, OR and XOR

We are given an array arr of n element. We need to count number of non-empty subsequences such that these individual subsequences have same values of bitwise AND, OR and XOR. For example, we need to count a subsequence (x, y, z) if (x | y | z) is equal to (x & y & z) and (x ^ y ^ z). For a single element subsequence, we consider the element itself as result of XOR, AND and OR. Therefore all single-element subsequences are always counted as part of result.

Examples: 

Input :  a = [1, 3, 7]
Output : 3
Explanation: 
There are 7 non empty subsequence .
subsequence   OR  AND  XOR
{1}            1    1    1
{3}            3    3    3
{7}            7    7    7
{1, 3}         3    1    2
{1, 7}         7    1    6
{3, 7}         7    3    4
{1, 3, 7}      7    1    5
Out of 7, there are 3 subsequences {1}
{3} {7} which have same values of AND, 
OR and XOR. 

Input :  a[] = [0, 0, 0]
Output : 7
Explanation:  All 7 non empty subsequences 
have same values of AND, OR and XOR. 

Input : a[] = [2, 2, 2, 3, 4]
Output : 6
Explanation:  subsequence {2}, {2}, {2},
{2, 2, 2}, {3}, {4} have same values of
AND, OR and XOR.
 

1) If there are n occurrences of zeroes in the given array, then will be 2n – 1 subsequences contributed by these zeroes. 
2) If there are n occurrences of a non-zero element x, then there will be 2n-1 subsequences contributed by occurrences of this element. Please note that, in case of non-zero elements, only odd number of occurrences can cause same results for bitwise operators.
Find count of each element in the array then apply the above formulas.

C++




#include <bits/stdc++.h>
using namespace std;
 
// function for finding count of  possible subsequence
int countSubseq(int arr[], int n)
{
    int count = 0;
 
    // creating a map to count the frequency of each element
    unordered_map<int, int> mp;
 
    // store frequency of each element
    for (int i = 0; i < n; i++)
        mp[arr[i]]++;
 
    // iterate through the map
    for (auto i : mp) {
 
        // add all possible combination for key equal zero
        if (i.first == 0)
            count += pow(2, i.second) - 1;
 
        // add all (odd number of elements) possible
        // combination for key other than zero
        else
            count += pow(2, i.second - 1);
    }
    return count;
}
 
// driver function
int main()
{
    int arr[] = { 2, 2, 2, 5, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countSubseq(arr, n);
    return 0;
}


Java




import java .io.*;
import java.util.*;
 
 
class GFG {
  
// function for finding count of  possible subsequence
static int countSubseq(int arr[], int n)
{
    int count = 0;
  
    // creating a map to count the frequency of each element
    HashMap<Integer,Integer>mp=new HashMap<Integer,Integer>();
  
    // store frequency of each element
    for (int i = 0; i < n; i++)
        if (mp.containsKey(arr[i]))
            mp.put(arr[i],mp.get(arr[i])+1);
        else
            mp.put(arr[i],1);
  
    // iterate through the map
    for (Map.Entry<Integer,Integer>entry:mp.entrySet()) {
  
        // add all possible combination for key equal zero
        if (entry.getKey() == 0)
            count += Math.pow(2, entry.getValue()) - 1;
  
        // add all (odd number of elements) possible
        // combination for key other than zero
        else
            count += Math.pow(2, entry.getValue()- 1);
    }
    return count;
}
  
// driver function
public static void main(String[] args)
{
    int arr[] = { 2, 2, 2, 5, 6 };
    int n=arr.length;
    System.out.println(countSubseq(arr, n));
}
}
 
// This code is contributed by apurva raj


C#




using System;
using System.Collections.Generic;
class GFG{
 
// function for finding count of possible subsequence
static int countSubseq(int []arr, int n)
{
    int count = 0;
 
    // creating a map to count the frequency of each element
     Dictionary<int, int> mp = new Dictionary<int,int>();
 
    // store frequency of each element
     for (int i = 0; i < n; i++)
        {
            if (mp.ContainsKey(arr[i])) 
            {
                var val = mp[arr[i]];
                mp.Remove(arr[i]);
                mp.Add(arr[i], val + 1); 
            
            else
            {
                mp.Add(arr[i], 1);
            }
        }
 
    // iterate through the map
    foreach(KeyValuePair<int, int> entry in mp) {
 
        // add all possible combination for key equal zero
        if (entry.Key == 0)
            count += (int)(Math.Pow(2, entry.Value - 1));
 
        // add all (odd number of elements) possible
        // combination for key other than zero
        else
            count += (int)(Math.Pow(2, entry.Value - 1));
    }
    return count;
}
 
// Driver function
public static void Main(String []args) 
    {
    int []arr = { 2, 2, 2, 5, 6 };
    int n = arr.Length;
    Console.WriteLine(countSubseq(arr, n));
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# function for finding count of possible subsequence
def countSubseq(arr, n):
    count = 0
 
    # creating a map to count the frequency of each element
    mp = {}
 
    # store frequency of each element
    for x in arr:
        if x in mp.keys():
            mp[x]+=1
        else:
            mp[x]=1
 
    # iterate through the map
    for i in mp.keys():
 
        # add all possible combination for key equal zero
        if (i == 0):
            count += pow(2, mp[i]) - 1
 
        # add all (odd number of elements) possible
        # combination for key other than zero
        else:
            count += pow(2, mp[i] - 1)
    return count
 
# Driver function
arr= [2, 2, 2, 5, 6 ]
n = len(arr)
print(countSubseq(arr, n))
 
# This code is contributed by apurva raj


Javascript




<script>
// function for finding count of possible subsequence
function countSubseq(arr, n)
{
    let count = 0;
 
    // creating a map to count the frequency of each element
    let mp = new Map();
 
    // store frequency of each element
    for (let i = 0; i < n; i++){
        mp[arr[i]]++;
 
        if(mp.has(arr[i])){
            mp.set(arr[i], mp.get(arr[i]) + 1)
        }else{
            mp.set(arr[i], 1)
        }
    }
 
    // iterate through the map
    for (let i of mp) {
 
        // add all possible combination for key equal zero
        if (i[0] == 0)
            count += Math.pow(2, i[1]) - 1;
 
        // add all (odd number of elements) possible
        // combination for key other than zero
        else
            count += Math.pow(2, i[1] - 1);
    }
    return count;
}
 
// driver function
    let arr = [ 2, 2, 2, 5, 6 ];
    let n = arr.length;
    document.write(countSubseq(arr, n));
 
// This code is contributed by _saurabh_jaiswal
</script>


Output: 

6

 

Time complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments