Friday, December 27, 2024
Google search engine
HomeData Modelling & AICount subarrays which contains both the maximum and minimum array element

Count subarrays which contains both the maximum and minimum array element

Given an array arr[] consisting of N distinct integers, the task is to find the number of subarrays which contains both the maximum and the minimum element from the given array.

Examples:

Input: arr[] = {1, 2, 3, 4}
Output:
Explanation:  
Only a single subarray {1, 2, 3, 4} consists of both the maximum (= 4) and the minimum (= 1) array elements.

Input: arr[] = {4, 1, 2, 3}
Output: 3
Explanation:  
Subarrays {4, 1}  , {4, 1, 2}, {4, 1, 2, 3}  consists of both the maximum(= 4) and the minimum(= 1) array elements .

Naive Approach: The simplest approach is to first, traverse the array and find the maximum and minimum of the array and then generate all possible subarrays of the given array. For each subarray, check if it contains both the maximum and the minimum array element. For all such subarrays, increase the count by 1. Finally, print the count of such subarrays.

Code-

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count subarray
// containing  both maximum and
// minimum array elements
int countSubArray(int arr[], int n)
{
    int maxi=INT_MIN;
    int mini=INT_MAX;
     
    for(int i=0;i<n;i++){
        maxi=max(maxi,arr[i]);
        mini=min(mini,arr[i]);
    }
    
    int count=0;
     
    for(int i=0;i<n;i++){
        int temp_max=arr[i];
        int temp_min=arr[i];
        for(int j=i;j<n;j++){
            if(arr[j]>temp_max){temp_max=arr[j];}
            if(arr[j]<temp_min){temp_min=arr[j];}
             
            //Checking that our subarray will contain
            //maximum and minimum element of array
            if((mini==temp_min) && (maxi==temp_max) ){
                count++;
            }
        }
    }
     
    return count;
}
 
// Driver Code
int main()
{
    int arr[] = { 4,1,2,3 };
    int n = sizeof(arr) / sizeof(arr[0]);
    // Function call
    cout << countSubArray(arr, n);
 
    return 0;
}


Javascript




// Function to count subarray
// containing both maximum and
// minimum array elements
function countSubArray(arr) {
  let maxi = Number.MIN_SAFE_INTEGER;
  let mini = Number.MAX_SAFE_INTEGER;
   
  for (let i = 0; i < arr.length; i++) {
    maxi = Math.max(maxi, arr[i]);
    mini = Math.min(mini, arr[i]);
  }
   
  let count = 0;
   
  for (let i = 0; i < arr.length; i++) {
    let temp_max = arr[i];
    let temp_min = arr[i];
    for (let j = i; j < arr.length; j++) {
      if (arr[j] > temp_max) {
        temp_max = arr[j];
      }
      if (arr[j] < temp_min) {
        temp_min = arr[j];
      }
       
      // Checking that our subarray will contain
      // maximum and minimum element of array
      if (mini == temp_min && maxi == temp_max) {
        count++;
      }
    }
  }
   
  return count;
}
 
// Driver Code
let arr = [4, 1, 2, 3];
// Function call
console.log(countSubArray(arr));


Output-

3

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach:  Follow the steps below to optimize the above approach:

  • Find the index of the maximum and minimum elements. Let i and j be the respective indices such that i < j.
  • All the subarray which starts from indices up to i and ends at indices after j will contain the maximum as well as the minimum array element.
  • Therefore, the possible indices for the starting index of the subarray are [0, i] (total = i + 1 ).
  • Therefore, the possible indices for the ending index of the subarray are [j, N – 1]  (total = N – j).
  • Therefore, the count of subarrays is given by (i + 1) * ( N – j).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count subarray
// containing  both maximum and
// minimum array elements
int countSubArray(int arr[], int n)
{
    // If the length of the
    // array is less than 2
    if (n < 2)
        return n;
 
    // Find the index of maximum element
    int i
        = max_element(arr, arr + n) - arr;
 
    // Find the index of minimum element
    int j
        = min_element(arr, arr + n) - arr;
 
    // If i > j, then swap
    // the value of i and j
    if (i > j)
        swap(i, j);
 
    // Return the answer
    return (i + 1) * (n - j);
}
 
// Driver Code
int main()
{
    int arr[] = { 4, 1, 2, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
    // Function call
    cout << countSubArray(arr, n);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
import java.lang.*;
 
class GFG{
     
// Function to count subarray
// containing both maximum and
// minimum array elements
static int countSubArray(int arr[], int n)
{
     
    // If the length of the
    // array is less than 2
    if (n < 2)
        return n;
 
    // Find the index of maximum element
    int i = max_element(arr);
 
    // Find the index of minimum element
    int j = min_element(arr);
 
    // If i > j, then swap
    // the value of i and j
    if (i > j)
    {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
         
    // Return the answer
    return (i + 1) * (n - j);
}
 
// Function to return max_element index
static int max_element(int[] arr)
{
    int idx = 0;
    int max = arr[0];
    for(int i = 1; i < arr.length; i++)
    {
        if(max < arr[i])
        {
            max = arr[i];
            idx = i;
        }
    }
    return idx;
}
 
// Function to return min_element index
static int min_element(int[] arr)
{
    int idx = 0;
    int min = arr[0];
    for(int i = 1; i < arr.length; i++)
    {
        if (arr[i] < min)
        {
            min = arr[i];
            idx = i;
        }
    }
    return idx;
}
 
// Driver Code
public static void main (String[] args)
{
    int arr[] = { 4, 1, 2, 3 };
    int n = arr.length;
     
    // Function call
    System.out.println(countSubArray(arr, n));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for
# the above approach
 
# Function to count subarray
# containing both maximum and
# minimum array elements
def countSubArray(arr, n):
   
    # If the length of the
    # array is less than 2
    if (n < 2):
        return n;
 
    # Find the index of
    # maximum element
    i = max_element(arr);
 
    # Find the index of
    # minimum element
    j = min_element(arr);
 
    # If i > j, then swap
    # the value of i and j
    if (i > j):
        tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
 
    # Return the answer
    return (i + 1) * (n - j);
 
# Function to return
# max_element index
def max_element(arr):
    idx = 0;
    max = arr[0];
     
    for i in range(1, len(arr)):
        if (max < arr[i]):
            max = arr[i];
            idx = i;
    return idx;
 
# Function to return
# min_element index
def min_element(arr):
    idx = 0;
    min = arr[0];
     
    for i in range(1, len(arr)):
        if (arr[i] < min):
            min = arr[i];
            idx = i;
 
    return idx;
 
# Driver Code
if __name__ == '__main__':
    arr = [4, 1, 2, 3];
    n = len(arr);
 
    # Function call
    print(countSubArray(arr, n));
 
# This code is contributed by Rajput-Ji


C#




// C# program for
// the above approach
using System;
class GFG{
     
// Function to count subarray
// containing both maximum and
// minimum array elements
static int countSubArray(int []arr,
                         int n)
{   
  // If the length of the
  // array is less than 2
  if (n < 2)
    return n;
 
  // Find the index of maximum element
  int i = max_element(arr);
 
  // Find the index of minimum element
  int j = min_element(arr);
 
  // If i > j, then swap
  // the value of i and j
  if (i > j)
  {
    int tmp = arr[i];
    arr[i] = arr[j];
    arr[j] = tmp;
  }
 
  // Return the answer
  return (i + 1) * (n - j);
}
 
// Function to return max_element index
static int max_element(int[] arr)
{
  int idx = 0;
  int max = arr[0];
  for(int i = 1; i < arr.Length; i++)
  {
    if(max < arr[i])
    {
      max = arr[i];
      idx = i;
    }
  }
  return idx;
}
 
// Function to return min_element index
static int min_element(int[] arr)
{
  int idx = 0;
  int min = arr[0];
  for(int i = 1; i < arr.Length; i++)
  {
    if (arr[i] < min)
    {
      min = arr[i];
      idx = i;
    }
  }
  return idx;
}
 
// Driver Code
public static void Main(String[] args)
{
  int []arr = {4, 1, 2, 3};
  int n = arr.Length;
 
  // Function call
  Console.WriteLine(countSubArray(arr, n));
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
// javascript program for the
// above approach
 
// Function to count subarray
// containing both maximum and
// minimum array elements
function countSubArray(arr, n)
{
      
    // If the length of the
    // array is less than 2
    if (n < 2)
        return n;
  
    // Find the index of maximum element
    let i = max_element(arr);
  
    // Find the index of minimum element
    let j = min_element(arr);
  
    // If i > j, then swap
    // the value of i and j
    if (i > j)
    {
        let tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
          
    // Return the answer
    return (i + 1) * (n - j);
}
  
// Function to return max_element index
function max_element(arr)
{
    let idx = 0;
    let max = arr[0];
    for(let i = 1; i < arr.length; i++)
    {
        if(max < arr[i])
        {
            max = arr[i];
            idx = i;
        }
    }
    return idx;
}
  
// Function to return min_element index
function min_element(arr)
{
    let idx = 0;
    let min = arr[0];
    for(let i = 1; i < arr.length; i++)
    {
        if (arr[i] < min)
        {
            min = arr[i];
            idx = i;
        }
    }
    return idx;
}
  
// Driver Code
 
     let arr = [ 4, 1, 2, 3 ];
    let n = arr.length;
      
    // Function call
    document.write(countSubArray(arr, n));
  
 // This code is contributed by avijitmondal1998
</script>


Output: 

3

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments