Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AICount subarrays such that remainder after dividing sum of elements by K...

Count subarrays such that remainder after dividing sum of elements by K gives count of elements

Given an array arr[] of size N and an element K. The task is to find the number of sub-arrays of the given array such that the remainder when dividing the sum of its elements by K is equal to the number of elements in the subarray.

Examples: 

Input: arr[] = {1, 4, 2, 3, 5}, K = 4 
Output:
{1}, {1, 4, 2}, {4, 2} and {5} 
are the only valid subarrays.
Input: arr[] = {4, 2, 4, 2, 4, 2, 4, 2}, K = 4 
Output:

Approach: Let’s define a sequence Sn such that Si = A1 + A2 + ··· + Ai and S0 = 0. Then, the condition that a contiguous subsequence Ai+1, …, Aj is valid can be represented as (Sj – Si) % K = j – i
This equation can then be transformed into the following equivalent conditions: 
(Sj – j) % K = (Si – i) % K and j – i < K
Therefore, for each j(1 ? j ? N), count the number of j – K < i < j such that (Sj – j) % K = (Si – i) % K. For j the segment needed to be searched is (j – K, j), and for j + 1, it is (j – K + 1, j + 1), and these differ only by one element at the leftmost and rightmost, so in order to search for (j + 1)th after searching for jth element, only discard the leftmost element and add the rightmost element. Operations of discarding or adding can be performed quickly by managing the number of Si – i‘s by using associative arrays (such as map in C++ or dict in Python).

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number of subarrays
// of the given array such that the remainder
// when dividing the sum of its elements
// by K is equal to the number of its elements
int sub_arrays(int a[], int n, int k)
{
 
    // To store prefix sum
    int sum[n + 2] = { 0 };
 
    for (int i = 0; i < n; i++) {
 
        // We are dealing with zero
        // indexed array
        a[i]--;
 
        // Taking modulus value
        a[i] %= k;
 
        // Prefix sum
        sum[i + 1] += sum[i] + a[i];
        sum[i + 1] %= k;
    }
 
    // To store the required answer, the left
    // index and the right index
    int ans = 0, l = 0, r = 0;
 
    // To store si - i value
    map<int, int> mp;
 
    for (int i = 0; i < n + 1; i++) {
 
        // Include sum
        ans += mp[sum[i]];
        mp[sum[i]]++;
 
        // Increment the right index
        r++;
 
        // If subarray has at least
        // k elements
        if (r - l >= k) {
            mp[sum[l]]--;
            l++;
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int a[] = { 1, 4, 2, 3, 5 };
    int n = sizeof(a) / sizeof(a[0]);
 
    int k = 4;
 
    // Function call
    cout << sub_arrays(a, n, k);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class gfg
{
     
    // Function to return the number of subarrays
    // of the given array such that the remainder
    // when dividing the sum of its elements
    // by K is equal to the number of its elements
    static int sub_arrays(int []a, int n, int k)
    {
     
        // To store prefix sum
        int sum[] = new int[n + 2] ;
         
        for (int i = 0; i < n+2; i++)
        {
            sum[i] = 0;
        }
         
        for (int i = 0; i < n; i++)
        {
     
            // We are dealing with zero
            // indexed array
            a[i]--;
     
            // Taking modulus value
            a[i] %= k;
     
            // Prefix sum
            sum[i + 1] += sum[i] + a[i];
            sum[i + 1] %= k;
        }
     
        // To store the required answer, the left
        // index and the right index
        int ans = 0, l = 0, r = 0;
     
        // To store si - i value
        HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>();
     
        for (int i = 0; i < n + 1; i++)
        {
            mp.put(sum[i], 0);
        }
        int temp;
         
        for (int i = 0; i < n + 1; i++)
        {
     
            // Include sum
            ans += (int)mp.get(sum[i]);
            temp =(int)mp.get(sum[i]) + 1;
            mp.put(sum[i], temp);
     
            // Increment the right index
            r++;
     
            // If subarray has at least
            // k elements
            if (r - l >= k)
            {
                //mp[sum[l]]--;
                temp = (int)mp.get(sum[l]) - 1;
                mp.put(sum[l], temp);
                l++;
            }
        }
     
        // Return the required answer
        return ans;
    }
     
    // Driver code
    public static void main(String args[])
    {
        int []a = { 1, 4, 2, 3, 5 };
         
        int n = a.length;
     
        int k = 4;
     
        // Function call
        System.out.print(sub_arrays(a, n, k));
     
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the number of
# subarrays of the given array
# such that the remainder when dividing
# the sum of its elements by K is
# equal to the number of its elements
def sub_arrays(a, n, k):
 
    # To store prefix sum
    sum = [0 for i in range(n + 2)]
 
    for i in range(n):
 
        # We are dealing with zero
        # indexed array
        a[i] -= 1
 
        # Taking modulus value
        a[i] %= k
 
        # Prefix sum
        sum[i + 1] += sum[i] + a[i]
        sum[i + 1] %= k
 
    # To store the required answer,
    # the left index and the right index
    ans = 0
    l = 0
    r = 0
 
    # To store si - i value
    mp = dict()
 
    for i in range(n + 1):
 
        # Include sum
        if sum[i] in mp:
            ans += mp[sum[i]]
        mp[sum[i]] = mp.get(sum[i], 0) + 1
 
        # Increment the right index
        r += 1
 
        # If subarray has at least
        # k elements
        if (r - l >= k):
            mp[sum[l]] -= 1
            l += 1
 
    # Return the required answer
    return ans
 
# Driver code
a = [1, 4, 2, 3, 5]
n = len(a)
 
k = 4
 
# Function call
print(sub_arrays(a, n, k))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class gfg
{
    // Function to return the number of subarrays
    // of the given array such that the remainder
    // when dividing the sum of its elements
    // by K is equal to the number of its elements
    static int sub_arrays(int []a, int n, int k)
    {
     
        // To store prefix sum
        int []sum = new int[n + 2] ;
         
        for (int i = 0; i < n + 2; i++)
        {
            sum[i] = 0;
        }
         
        for (int i = 0; i < n; i++)
        {
     
            // We are dealing with zero
            // indexed array
            a[i]--;
     
            // Taking modulus value
            a[i] %= k;
     
            // Prefix sum
            sum[i + 1] += sum[i] + a[i];
            sum[i + 1] %= k;
        }
     
        // To store the required answer, the left
        // index and the right index
        int ans = 0, l = 0, r = 0;
     
        // To store si - i value
        Dictionary<int, int> mp = new Dictionary<int, int>();
     
        for (int i = 0; i < n + 1; i++)
        {
            if(!mp.ContainsKey(sum[i]))
                mp.Add(sum[i], 0);
        }
        int temp;
         
        for (int i = 0; i < n + 1; i++)
        {
     
            // Include sum
            ans += (int)mp[sum[i]];
            temp =(int)mp[sum[i]] + 1;
            mp[sum[i]] = temp;
     
            // Increment the right index
            r++;
     
            // If subarray has at least
            // k elements
            if (r - l >= k)
            {
                //mp[sum[l]]--;
                temp = (int)mp[sum[l]] - 1;
                mp[sum[i]] = temp;
                l++;
            }
        }
     
        // Return the required answer
        return ans;
    }
     
    // Driver code
    public static void Main(String []args)
    {
        int []a = { 1, 4, 2, 3, 5 };
         
        int n = a.Length;
     
        int k = 4;
     
        // Function call
        Console.Write(sub_arrays(a, n, k));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the number of subarrays
// of the given array such that the remainder
// when dividing the sum of its elements
// by K is equal to the number of its elements
function sub_arrays(a, n, k) {
 
    // To store prefix sum
    let sum = new Array(n + 2);
 
    for (let i = 0; i < n + 2; i++) {
        sum[i] = 0;
    }
 
    for (let i = 0; i < n; i++) {
 
        // We are dealing with zero
        // indexed array
        a[i]--;
 
        // Taking modulus value
        a[i] %= k;
 
        // Prefix sum
        sum[i + 1] += sum[i] + a[i];
        sum[i + 1] %= k;
    }
 
    // To store the required answer, the left
    // index and the right index
    let ans = 0, l = 0, r = 0;
 
    // To store si - i value
    let mp = new Map();
 
    for (let i = 0; i < n + 1; i++) {
        if (!mp.has(sum[i]))
            mp.set(sum[i], 0);
    }
    let temp;
 
    for (let i = 0; i < n + 1; i++) {
 
        // Include sum
        ans += mp.get(sum[i]);
        temp = mp.get(sum[i]) + 1;
        mp.set(sum[i], temp);
 
        // Increment the right index
        r++;
 
        // If subarray has at least
        // k elements
        if (r - l >= k) {
            //mp[sum[l]]--;
            temp = mp.get(sum[l]) - 1;
            mp.set(sum[i], temp);
            l++;
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
 
let a = [1, 4, 2, 3, 5];
 
let n = a.length;
 
let k = 4;
 
// Function call
document.write(sub_arrays(a, n, k));
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output:

4

Time Complexity: O(N* log(N))
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments