Sunday, January 12, 2025
Google search engine
HomeData Modelling & AICount single node isolated sub-graphs in a disconnected graph

Count single node isolated sub-graphs in a disconnected graph

A disconnected Graph with N vertices and K edges is given. The task is to find the count of singleton sub-graphs. A singleton graph is one with only single vertex.

Examples: 

Input : 
Vertices : 6
Edges :    1 2
           1 3
           5 6
Output : 1
Explanation :  The Graph has 3 components : {1-2-3}, {5-6}, {4}
Out of these, the only component forming singleton graph is {4}.

The idea is simple for graph given as adjacency list representation. We traverse the list and find the indices(representing a node) with no elements in list, i.e. no connected components.

Below is the representation : 

C++




// CPP code to count the singleton sub-graphs
// in a disconnected graph
#include <bits/stdc++.h>
using namespace std;
 
// Function to compute the count
int compute(vector<int> graph[], int N)
{
    // Storing intermediate result
    int count = 0;
 
    // Traversing the Nodes
    for (int i = 1; i <= N; i++)
 
        // Singleton component
        if (graph[i].size() == 0)
            count++;   
 
    // Returning the result
    return count;
}
 
// Driver
int main()
{
    // Number of nodes
    int N = 6;
 
    // Adjacency list for edges 1..6
    vector<int> graph[7];
 
    // Representing edges
    graph[1].push_back(2);
    graph[2].push_back(1);
 
    graph[2].push_back(3);
    graph[3].push_back(2);
 
    graph[5].push_back(6);
    graph[6].push_back(5);
 
    cout << compute(graph, N);
}


Java




// Java code to count the singleton sub-graphs
// in a disconnected graph
import java.util.*;
 
class GFG
{
 
// Function to compute the count
static int compute(int []graph, int N)
{
    // Storing intermediate result
    int count = 0;
     
    // Traversing the Nodes
    for (int i = 1; i < 7; i++)
    {
        // Singleton component
        if (graph[i] == 0)
            count++;    
    }
         
    // Returning the result
    return count;
}
 
// Driver Code
public static void main(String[] args)
{
    // Number of nodes
    int N = 6;
 
    // Adjacency list for edges 1..6
    int []graph = new int[7];
    // Representing edges
    graph[1] = 2;
    graph[2] = 1;
    graph[2] = 3;
    graph[3] = 2;
    graph[5] = 6;
    graph[6] = 5;
 
    System.out.println(compute(graph, N));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python code to count the singleton sub-graphs
# in a disconnected graph
  
# Function to compute the count
def compute(graph, N):
    # Storing intermediate result
    count = 0
   
    # Traversing the Nodes
    for i in range(1, N+1):
   
        # Singleton component
        if (len(graph[i]) == 0):
            count += 1   
   
    # Returning the result
    return count
   
# Driver
if __name__ == '__main__':
 
    # Number of nodes
    N = 6
   
    # Adjacency list for edges 1..6
    graph = [[] for i in range(7)]
   
    # Representing edges
    graph[1].append(2)
    graph[2].append(1)
   
    graph[2].append(3)
    graph[3].append(2)
   
    graph[5].append(6)
    graph[6].append(5)
   
    print(compute(graph, N))


C#




// C# code to count the singleton sub-graphs
// in a disconnected graph
using System;
 
class GFG
{
 
// Function to compute the count
static int compute(int []graph, int N)
{
    // Storing intermediate result
    int count = 0;
     
    // Traversing the Nodes
    for (int i = 1; i < 7; i++)
    {
        // Singleton component
        if (graph[i] == 0)
            count++;    
    }
         
    // Returning the result
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    // Number of nodes
    int N = 6;
 
    // Adjacency list for edges 1..6
    int []graph = new int[7];
     
    // Representing edges
    graph[1] = 2;
    graph[2] = 1;
    graph[2] = 3;
    graph[3] = 2;
    graph[5] = 6;
    graph[6] = 5;
 
    Console.WriteLine(compute(graph, N));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript code to count the singleton sub-graphs
// in a disconnected graph
 
// Function to compute the count
function compute(graph,N)
{
    // Storing intermediate result
    let count = 0;
       
    // Traversing the Nodes
    for (let i = 1; i < 7; i++)
    {
        // Singleton component
        if (graph[i].length == 0)
            count++;    
    }
           
    // Returning the result
    return count;
}
 
// Driver Code
// Number of nodes
let N = 6;
 
// Adjacency list for edges 1..6
let graph = new Array(7);
for(let i=0;i<7;i++)
{
    graph[i]=[];
}
// Representing edges
graph[1].push(2)
graph[2].push(1)
 
graph[2].push(3)
graph[3].push(2)
 
graph[5].push(6)
graph[6].push(5)
document.write(compute(graph, N));
 
// This code is contributed by rag2127
 
</script>


Output

1

This article is contributed by Rohit Thapliyal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments