Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AICount set bits in the Kth number after segregating even and odd...

Count set bits in the Kth number after segregating even and odd from N natural numbers

Given two integers N and K, the task is to find the count of set bits in the Kth number in the Odd-Even sequence made of the number from the range [1, N]. The Odd-Even sequence first contains all the odd numbers from 1 to N and then all the even numbers from 1 to N.
Examples: 
 

Input: N = 8, K = 4 
Output:
The sequence is 1, 3, 5, 7, 2, 4, 6 and 8. 
4th element is 7 and the count 
of set bits in it is 3.
Input: N = 18, K = 12 
Output:
 

 

Approach: An approach to find the Kth element of the required sequence has been discussed in this article. So, find the required number and then use __builtin_popcount() to find the count of set bits in it.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the kth element
// of the Odd-Even sequence
// of length n
int findK(int n, int k)
{
    int pos;
 
    // Finding the index from where the
    // even numbers will be stored
    if (n % 2 == 0) {
        pos = n / 2;
    }
    else {
        pos = (n / 2) + 1;
    }
 
    // Return the kth element
    if (k <= pos) {
        return (k * 2 - 1);
    }
    else
 
        return ((k - pos) * 2);
}
 
// Function to return the count of
// set bits in the kth number of the
// odd even sequence of length n
int countSetBits(int n, int k)
{
 
    // Required kth number
    int kth = findK(n, k);
 
    // Return the count of set bits
    return __builtin_popcount(kth);
}
 
// Driver code
int main()
{
    int n = 18, k = 12;
 
    cout << countSetBits(n, k);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the kth element
    // of the Odd-Even sequence
    // of length n
    static int findK(int n, int k)
    {
        int pos;
     
        // Finding the index from where the
        // even numbers will be stored
        if (n % 2 == 0)
        {
            pos = n / 2;
        }
        else
        {
            pos = (n / 2) + 1;
        }
     
        // Return the kth element
        if (k <= pos)
        {
            return (k * 2 - 1);
        }
        else
            return ((k - pos) * 2);
    }
     
    // Function to return the count of
    // set bits in the kth number of the
    // odd even sequence of length n
    static int countSetBits(int n, int k)
    {
     
        // Required kth number
        int kth = findK(n, k);
         
        int count = 0;
         
        while (kth > 0)
        {
            count += kth & 1;
            kth >>= 1;
        }
         
        // Return the count of set bits
        return count;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 18, k = 12;
     
        System.out.println(countSetBits(n, k));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the kth element
# of the Odd-Even sequence
# of length n
def findK(n, k) :
     
    # Finding the index from where the
    # even numbers will be stored
    if (n % 2 == 0) :
        pos = n // 2;
    else :
        pos = (n // 2) + 1;
 
    # Return the kth element
    if (k <= pos) :
        return (k * 2 - 1);
    else :
        return ((k - pos) * 2);
 
# Function to return the count of
# set bits in the kth number of the
# odd even sequence of length n
def countSetBits( n, k) :
     
    # Required kth number
    kth = findK(n, k);
     
    # Return the count of set bits
    return bin(kth).count('1');
 
# Driver code
if __name__ == "__main__" :
    n = 18; k = 12;
    print(countSetBits(n, k));
 
# This code is contributed by kanugargng


C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function to return the kth element
    // of the Odd-Even sequence
    // of length n
    static int findK(int n, int k)
    {
        int pos;
     
        // Finding the index from where the
        // even numbers will be stored
        if (n % 2 == 0)
        {
            pos = n / 2;
        }
        else
        {
            pos = (n / 2) + 1;
        }
     
        // Return the kth element
        if (k <= pos)
        {
            return (k * 2 - 1);
        }
        else
            return ((k - pos) * 2);
    }
     
    // Function to return the count of
    // set bits in the kth number of the
    // odd even sequence of length n
    static int countSetBits(int n, int k)
    {
     
        // Required kth number
        int kth = findK(n, k);
         
        int count = 0;
         
        while (kth > 0)
        {
            count += kth & 1;
            kth >>= 1;
        }
         
        // Return the count of set bits
        return count;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int n = 18, k = 12;
     
        Console.WriteLine(countSetBits(n, k));
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to return the kth element 
    // of the Odd-Even sequence 
    // of length n 
    function findK(n, k) 
    
        let pos; 
       
        // Finding the index from where the 
        // even numbers will be stored 
        if (n % 2 == 0) 
        
            pos = parseInt(n / 2, 10); 
        
        else
        
            pos = parseInt(n / 2, 10) + 1; 
        
       
        // Return the kth element 
        if (k <= pos) 
        
            return (k * 2 - 1); 
        
        else
        {
            return ((k - pos) * 2);
        }
    
       
    // Function to return the count of 
    // set bits in the kth number of the 
    // odd even sequence of length n 
    function countSetBits(n, k) 
    
        // Required kth number 
        let kth = findK(n, k);
         
        let count = 0; 
           
        while (kth > 0) 
        
            count += kth & 1; 
            kth >>= 1; 
        
           
        // Return the count of set bits 
        return count;
    }
     
    let n = 18, k = 12; 
    document.write(countSetBits(n, k)); 
     
</script>


Output: 

2

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
01 Mar, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments