Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount sequences of given length having non-negative prefix sums that can be...

Count sequences of given length having non-negative prefix sums that can be generated by given values

Given two integers M and X, the task is to find the number of sequences of length M that can be generated comprising X and -X such that their respective counts are equal and the prefix sum up to each index of the resulting sequence is non-negative.

Examples:

Input: M = 4, X = 5
Output: 2
Explanation:
There are only 2 possible sequences that have all possible prefix sums non-negative: 

  1. {+5, +5, -5, -5}
  2. {+5, -5, +5, -5}

Input: M = 6, X = 2
Output: 5
Explanation:
There are only 5 possible sequences that have all possible prefix sums non-negative:

  1. {+2, +2, +2, -2, -2, -2}
  2. {+2, +2, -2, -2, +2, -2}
  3. {+2, -2, +2, -2, +2, -2}
  4. {+2, +2, -2, +2, -2, -2}
  5. {+2, -2, +2, +2, -2, -2}

Naive Approach: The simplest approach is to generate all possible arrangements of size M with the given integers +X and -X and find the prefix sum of each arrangement formed and count those sequences whose prefix sum array has only non-negative elements. Print the count of such sequence after the above steps. 

Time Complexity: O((M*(M!))/((M/2)!)2
Auxiliary Space: O(M)

Efficient Approach: The idea is to observe the pattern that for any sequence formed the number of positive X that has occurred at each index is always greater than or equal to the number of negative X that occurred. This is similar to the pattern of Catalan Numbers. In this case, check that at any point the number of positive X that occurred is always greater than or equal to the number of negative X that occurred which is the pattern of Catalan numbers. So the task is to find the Nth Catalan number where N = M/2.

K_{N} = \frac{\binom{2N}{N}}{N + 1}        

where, KN is Nth the Catalan Number and \binom{2N}{N}    is the binomial coefficient. 
 

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the Binomial
// Coefficient C(n, r)
unsigned long int binCoff(unsigned int n,
                          unsigned int r)
{
    // Stores the value C(n, r)
    unsigned long int val = 1;
    int i;
 
    // Update C(n, r) = C(n, n - r)
    if (r > (n - r))
        r = (n - r);
 
    // Find C(n, r) iteratively
    for (i = 0; i < r; i++) {
        val *= (n - i);
        val /= (i + 1);
    }
 
    // Return the final value
    return val;
}
 
// Function to find number of sequence
// whose prefix sum at each index is
// always non-negative
void findWays(int M)
{
    // Find n
    int n = M / 2;
 
    unsigned long int a, b, ans;
 
    // Value of C(2n, n)
    a = binCoff(2 * n, n);
 
    // Catalan number
    b = a / (n + 1);
 
    // Print the answer
    cout << b;
}
 
// Driver Code
int main()
{
    // Given M and X
    int M = 4, X = 5;
 
    // Function Call
    findWays(M);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Function to find the Binomial
// Coefficient C(n, r)
static long binCoff(long n, long r)
{
     
    // Stores the value C(n, r)
    long val = 1;
    int i;
 
    // Update C(n, r) = C(n, n - r)
    if (r > (n - r))
        r = (n - r);
 
    // Find C(n, r) iteratively
    for(i = 0; i < r; i++)
    {
        val *= (n - i);
        val /= (i + 1);
    }
 
    // Return the final value
    return val;
}
 
// Function to find number of sequence
// whose prefix sum at each index is
// always non-negative
static void findWays(int M)
{
     
    // Find n
    int n = M / 2;
 
    long a, b, ans;
 
    // Value of C(2n, n)
    a = binCoff(2 * n, n);
 
    // Catalan number
    b = a / (n + 1);
 
    // Print the answer
    System.out.print(b);
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given M and X
    int M = 4, X = 5;
 
    // Function Call
    findWays(M);
}
}
 
// This code is contributed by akhilsaini


Python3




# Python3 program for the above approach
 
# Function to find the Binomial
# Coefficient C(n, r)
def binCoff(n, r):
 
    # Stores the value C(n, r)
    val = 1
 
    # Update C(n, r) = C(n, n - r)
    if (r > (n - r)):
        r = (n - r)
 
    # Find C(n, r) iteratively
    for i in range(0, r):
        val *= (n - i)
        val //= (i + 1)
 
    # Return the final value
    return val
 
# Function to find number of sequence
# whose prefix sum at each index is
# always non-negative
def findWays(M):
 
    # Find n
    n = M // 2
 
    # Value of C(2n, n)
    a = binCoff(2 * n, n)
 
    # Catalan number
    b = a // (n + 1)
 
    # Print the answer
    print(b)
 
# Driver Code
if __name__ == '__main__':
 
    # Given M and X
    M = 4
    X = 5
 
    # Function Call
    findWays(M)
 
# This code is contributed by akhilsaini


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the Binomial
// Coefficient C(n, r)
static long binCoff(long n, long r)
{
     
    // Stores the value C(n, r)
    long val = 1;
    int i;
 
    // Update C(n, r) = C(n, n - r)
    if (r > (n - r))
        r = (n - r);
 
    // Find C(n, r) iteratively
    for(i = 0; i < r; i++)
    {
        val *= (n - i);
        val /= (i + 1);
    }
 
    // Return the final value
    return val;
}
 
// Function to find number of sequence
// whose prefix sum at each index is
// always non-negative
static void findWays(int M, int X)
{
     
    // Find n
    int n = M / 2;
 
    long a, b;
 
    // Value of C(2n, n)
    a = binCoff(2 * n, n);
 
    // Catalan number
    b = a / (n + 1);
 
    // Print the answer
    Console.WriteLine(b);
}
 
// Driver Code
public static void Main()
{
     
    // Given M and X
    int M = 4;
    int X = 5;
 
    // Function Call
    findWays(M, X);
}
}
 
// This code is contributed by akhilsaini


Javascript




<script>
// Javascript program to implement
// the above approach
 
// Function to find the Binomial
// Coefficient C(n, r)
function binCoff(n, r)
{
       
    // Stores the value C(n, r)
    let val = 1;
    let i;
   
    // Update C(n, r) = C(n, n - r)
    if (r > (n - r))
        r = (n - r);
   
    // Find C(n, r) iteratively
    for(i = 0; i < r; i++)
    {
        val *= (n - i);
        val /= (i + 1);
    }
   
    // Return the final value
    return val;
}
   
// Function to find number of sequence
// whose prefix sum at each index is
// always non-negative
function findWays(M)
{
       
    // Find n
    let n = M / 2;
   
    let a, b, ans;
   
    // Value of C(2n, n)
    a = binCoff(2 * n, n);
   
    // Catalan number
    b = a / (n + 1);
   
    // Print the answer
    document.write(b);
}
 
 
    // Driver Code
      
    // Given M and X
    let M = 4, X = 5;
   
    // Function Call
    findWays(M);
 
      
</script>


Output: 

2

 

Time Complexity: O(M)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments