Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount rotations divisible by 8

Count rotations divisible by 8

Given a large positive number as string, count all rotations of the given number which are divisible by 8.

Examples: 

Input: 8
Output: 1

Input: 40
Output: 1
Rotation: 40 is divisible by 8
          04 is not divisible by 8

Input : 13502
Output : 0
No rotation is divisible by 8

Input : 43262488612
Output : 4

Approach: For large numbers it is difficult to rotate and divide each number by 8. Therefore, ‘divisibility by 8’ property is used which says that a number is divisible by 8 if the last 3 digits of the number is divisible by 8. Here we do not actually rotate the number and check last 8 digits for divisibility, instead we count consecutive sequence of 3 digits (in circular way) which are divisible by 8.

Illustration:  

Consider a number 928160
Its rotations are 928160, 092816, 609281, 
160928, 816092, 281609.
Now form consecutive sequence of 3-digits from 
the original number 928160 as mentioned in the 
approach. 
3-digit: (9, 2, 8), (2, 8, 1), (8, 1, 6), 
(1, 6, 0),(6, 0, 9), (0, 9, 2)
We can observe that the 3-digit number formed by 
the these sets, i.e., 928, 281, 816, 160, 609, 092, 
are present in the last 3 digits of some rotation.
Thus, checking divisibility of these 3-digit numbers
gives the required number of rotations. 

C++




// C++ program to count all rotations divisible
// by 8
#include <bits/stdc++.h>
using namespace std;
 
// function to count of all rotations divisible
// by 8
int countRotationsDivBy8(string n)
{
    int len = n.length();
    int count = 0;
 
    // For single digit number
    if (len == 1) {
        int oneDigit = n[0] - '0';
        if (oneDigit % 8 == 0)
            return 1;
        return 0;
    }
 
    // For two-digit numbers (considering all
    // pairs)
    if (len == 2) {
 
        // first pair
        int first = (n[0] - '0') * 10 + (n[1] - '0');
 
        // second pair
        int second = (n[1] - '0') * 10 + (n[0] - '0');
 
        if (first % 8 == 0)
            count++;
        if (second % 8 == 0)
            count++;
        return count;
    }
 
    // considering all three-digit sequences
    int threeDigit;
    for (int i = 0; i < (len - 2); i++) {
        threeDigit = (n[i] - '0') * 100 +
                     (n[i + 1] - '0') * 10 +
                     (n[i + 2] - '0');
        if (threeDigit % 8 == 0)
            count++;
    }
 
    // Considering the number formed by the
    // last digit and the first two digits
    threeDigit = (n[len - 1] - '0') * 100 +
                 (n[0] - '0') * 10 +
                 (n[1] - '0');
 
    if (threeDigit % 8 == 0)
        count++;
 
    // Considering the number formed by the last
    // two digits and the first digit
    threeDigit = (n[len - 2] - '0') * 100 +
                 (n[len - 1] - '0') * 10 +
                 (n[0] - '0');
    if (threeDigit % 8 == 0)
        count++;
 
    // required count of rotations
    return count;
}
 
// Driver program to test above
int main()
{
    string n = "43262488612";
    cout << "Rotations: "
         << countRotationsDivBy8(n);
    return 0;
}


Java




// Java program to count all
// rotations divisible by 8
import java.io.*;
 
class GFG
{
    // function to count of all
    // rotations divisible by 8
    static int countRotationsDivBy8(String n)
    {
        int len = n.length();
        int count = 0;
     
        // For single digit number
        if (len == 1) {
            int oneDigit = n.charAt(0) - '0';
            if (oneDigit % 8 == 0)
                return 1;
            return 0;
        }
     
        // For two-digit numbers
        // (considering all pairs)
        if (len == 2) {
     
            // first pair
            int first = (n.charAt(0) - '0') *
                        10 + (n.charAt(1) - '0');
     
            // second pair
            int second = (n.charAt(1) - '0') *
                         10 + (n.charAt(0) - '0');
     
            if (first % 8 == 0)
                count++;
            if (second % 8 == 0)
                count++;
            return count;
        }
     
        // considering all three-digit sequences
        int threeDigit;
        for (int i = 0; i < (len - 2); i++)
        {
            threeDigit = (n.charAt(i) - '0') * 100 +
                        (n.charAt(i + 1) - '0') * 10 +
                        (n.charAt(i + 2) - '0');
            if (threeDigit % 8 == 0)
                count++;
        }
     
        // Considering the number formed by the
        // last digit and the first two digits
        threeDigit = (n.charAt(len - 1) - '0') * 100 +
                    (n.charAt(0) - '0') * 10 +
                    (n.charAt(1) - '0');
     
        if (threeDigit % 8 == 0)
            count++;
     
        // Considering the number formed by the last
        // two digits and the first digit
        threeDigit = (n.charAt(len - 2) - '0') * 100 +
                    (n.charAt(len - 1) - '0') * 10 +
                    (n.charAt(0) - '0');
        if (threeDigit % 8 == 0)
            count++;
     
        // required count of rotations
        return count;
    }
     
    // Driver program
    public static void main (String[] args)
    {
        String n = "43262488612";
        System.out.println( "Rotations: "
                       +countRotationsDivBy8(n));
         
    }
}
 
// This code is contributed by vt_m.


Python3




# Python3 program to count all
# rotations divisible by 8
 
# function to count of all
# rotations divisible by 8
def countRotationsDivBy8(n):
    l = len(n)
    count = 0
 
    # For single digit number
    if (l == 1):
        oneDigit = int(n[0])
        if (oneDigit % 8 == 0):
            return 1
        return 0
 
    # For two-digit numbers
    # (considering all pairs)
    if (l == 2):
 
        # first pair
        first = int(n[0]) * 10 + int(n[1])
 
        # second pair
        second = int(n[1]) * 10 + int(n[0])
 
        if (first % 8 == 0):
            count+=1
        if (second % 8 == 0):
            count+=1
        return count
 
    # considering all
    # three-digit sequences
    threeDigit=0
    for i in range(0,(l - 2)):
        threeDigit = (int(n[i]) * 100 +
                     int(n[i + 1]) * 10 +
                     int(n[i + 2]))
        if (threeDigit % 8 == 0):
            count+=1
 
    # Considering the number
    # formed by the last digit
    # and the first two digits
    threeDigit = (int(n[l - 1]) * 100 +
                 int(n[0]) * 10 +
                 int(n[1]))
 
    if (threeDigit % 8 == 0):
        count+=1
 
    # Considering the number
    # formed by the last two
    # digits and the first digit
    threeDigit = (int(n[l - 2]) * 100 +
                 int(n[l - 1]) * 10 +
                 int(n[0]))
    if (threeDigit % 8 == 0):
        count+=1
 
    # required count
    # of rotations
    return count
 
 
# Driver Code
if __name__=='__main__':
    n = "43262488612"
    print("Rotations:",countRotationsDivBy8(n))
 
# This code is contributed by mits.


C#




// C# program to count all
// rotations divisible by 8
using System;
 
class GFG {
     
    // function to count of all
    // rotations divisible by 8
    static int countRotationsDivBy8(String n)
    {
        int len = n.Length;
        int count = 0;
     
        // For single digit number
        if (len == 1)
        {
            int oneDigit = n[0] - '0';
            if (oneDigit % 8 == 0)
                return 1;
            return 0;
        }
     
        // For two-digit numbers
        // (considering all pairs)
        if (len == 2)
        {
     
            // first pair
            int first = (n[0] - '0') *
                         10 + (n[1] - '0');
     
            // second pair
            int second = (n[1] - '0') *
                          10 + (n[0] - '0');
     
            if (first % 8 == 0)
                count++;
            if (second % 8 == 0)
                count++;
            return count;
        }
     
        // considering all three -
        // digit sequences
        int threeDigit;
        for (int i = 0; i < (len - 2); i++)
        {
            threeDigit = (n[i] - '0') * 100 +
                         (n[i + 1] - '0') * 10 +
                         (n[i + 2] - '0');
            if (threeDigit % 8 == 0)
                count++;
        }
     
        // Considering the number formed by the
        // last digit and the first two digits
        threeDigit = (n[len - 1] - '0') * 100 +
                     (n[0] - '0') * 10 +
                     (n[1] - '0');
     
        if (threeDigit % 8 == 0)
            count++;
     
        // Considering the number formed
        // by the last two digits and
        // the first digit
        threeDigit = (n[len - 2] - '0') * 100 +
                     (n[len - 1] - '0') * 10 +
                     (n[0] - '0');
        if (threeDigit % 8 == 0)
            count++;
     
        // required count of rotations
        return count;
    }
     
    // Driver Code
    public static void Main ()
    {
        String n = "43262488612";
        Console.Write("Rotations: "
                      +countRotationsDivBy8(n));
         
    }
}
 
// This code is contributed by Nitin Mittal.


PHP




<?php
// PHP program to count all
// rotations divisible by 8
 
// function to count of all
// rotations divisible by 8
function countRotationsDivBy8($n)
{
    $len = strlen($n);
    $count = 0;
 
    // For single digit number
    if ($len == 1)
    {
        $oneDigit = $n[0] - '0';
        if ($oneDigit % 8 == 0)
            return 1;
        return 0;
    }
 
    // For two-digit numbers
    // (considering all pairs)
    if ($len == 2)
    {
 
        // first pair
        $first = ($n[0] - '0') * 10 +
                 ($n[1] - '0');
 
        // second pair
        $second = ($n[1] - '0') * 10 +
                  ($n[0] - '0');
 
        if ($first % 8 == 0)
            $count++;
        if ($second % 8 == 0)
            $count++;
        return $count;
    }
 
    // considering all
    // three-digit sequences
    $threeDigit;
    for ($i = 0; $i < ($len - 2); $i++)
    {
        $threeDigit = ($n[$i] - '0') * 100 +
                      ($n[$i + 1] - '0') * 10 +
                      ($n[$i + 2] - '0');
        if ($threeDigit % 8 == 0)
            $count++;
    }
 
    // Considering the number
    // formed by the last digit
    // and the first two digits
    $threeDigit = ($n[$len - 1] - '0') * 100 +
                  ($n[0] - '0') * 10 +
                  ($n[1] - '0');
 
    if ($threeDigit % 8 == 0)
        $count++;
 
    // Considering the number
    // formed by the last two
    // digits and the first digit
    $threeDigit = ($n[$len - 2] - '0') * 100 +
                  ($n[$len - 1] - '0') * 10 +
                   ($n[0] - '0');
    if ($threeDigit % 8 == 0)
        $count++;
 
    // required count
    // of rotations
    return $count;
}
 
// Driver Code
$n = "43262488612";
echo "Rotations: " .
      countRotationsDivBy8($n);
 
// This code is contributed by mits.
?>


Javascript




<script>
 
// Javascript program to count all
// rotations divisible by 8
 
// Function to count of all
// rotations divisible by 8
function countRotationsDivBy8(n)
{
    let len = n.length;
    let count = 0;
 
    // For single digit number
    if (len == 1)
    {
        let oneDigit = n[0] - '0';
         
        if (oneDigit % 8 == 0)
            return 1;
             
        return 0;
    }
 
    // For two-digit numbers
    // (considering all pairs)
    if (len == 2)
    {
         
        // first pair
        let first = (n[0] - '0') * 10 +
                    (n[1] - '0');
 
        // second pair
        let second = (n[1] - '0') * 10 +
                     (n[0] - '0');
 
        if (first % 8 == 0)
            count++;
        if (second % 8 == 0)
            count++;
             
        return count;
    }
 
    // Considering all
    // three-digit sequences
    let threeDigit;
    for(let i = 0; i < (len - 2); i++)
    {
        threeDigit = (n[i] - '0') * 100 +
                     (n[i + 1] - '0') * 10 +
                     (n[i + 2] - '0');
                      
        if (threeDigit % 8 == 0)
            count++;
    }
 
    // Considering the number
    // formed by the last digit
    // and the first two digits
    threeDigit = (n[len - 1] - '0') * 100 +
                  (n[0] - '0') * 10 +
                  (n[1] - '0');
 
    if (threeDigit % 8 == 0)
        count++;
 
    // Considering the number
    // formed by the last two
    // digits and the first digit
    threeDigit = (n[len - 2] - '0') * 100 +
                 (n[len - 1] - '0') * 10 +
                 (n[0] - '0');
                  
    if (threeDigit % 8 == 0)
        count++;
 
    // Required count
    // of rotations
    return count;
}
 
// Driver Code
let n = "43262488612";
 
document.write("Rotations: " +
               countRotationsDivBy8(n));
 
// This code is contributed by _saurabh_jaiswal
     
</script>


Output: 

Rotations: 4

Time Complexity : O(n), where n is the number of digits in input number.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments