Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AICount Possible Decodings of a given Digit Sequence in O(N) time and...

Count Possible Decodings of a given Digit Sequence in O(N) time and Constant Auxiliary space

Given a digit sequence S, the task is to find the number of possible decodings of the given digit sequence where 1 represents ‘A’, 2 represents ‘B’ … and so on up to 26, where 26 represents ‘Z’.

Examples:

Input: S = “121” 
Output:
The possible decodings are “ABA”, “AU”, “LA”

Input: S = “1234” 
Output:
The possible decodings are “ABCD”, “LCD”, “AWD”

Approach: In order to solve this problem in O(N) time complexity, Dynamic Programming is used. And in order to reduce the auxiliary space complexity to O(1), we use the space optimized version of recurrence relation discussed in the Fibonacci Number Post.
Similar to the Fibonacci Numbers, the key observations of any current ‘ith‘ index can be calculated using its previous two indices. So the Recurrence Relation to calculate the ith index can be denoted as

// Condition to check last
// digit can be included or not
if (digit[i-1] is not '0')
     count[i] += count[i-1]

// Condition to check the last
// two digits contribution
if (digit[i-2] is 1 or 
   (digit[i-2] is 2 and 
    digit[i-1] is less than 7))
     count[i] += count[i-2]

Below is the implementation of the above approach:

C++




// C++ implementation to count decodings
 
#include <bits/stdc++.h>
using namespace std;
 
// A Dynamic Programming based function
// to count decodings in digit sequence
int countDecodingDP(string digits, int n)
{
    // For base condition "01123"
    // should return 0
    if (digits[0] == '0')
        return 0;
 
    int count0 = 1, count1 = 1, count2;
 
    // Using last two calculated values,
    // calculate for ith index
    for (int i = 2; i <= n; i++) {
        count2 = ((int)(digits[i - 1] != '0') *  count1) +
                  (int)((digits[i - 2] == '1') or
                  (digits[i - 2] == '2' and
                   digits[i - 1] < '7')) * count0;
        count0 = count1;
        count1 = count2;
    }
 
    // Return the required answer
    return count1;
}
 
// Driver Code
int main()
{
    string digits = "1234";
    int n = digits.size();
 
    // Function call
    cout << countDecodingDP(digits, n);
 
    return 0;
}


Java




// Java implementation to count decodings
class GFG{
 
// A Dynamic programming based function
// to count decodings in digit sequence
static int countDecodingDP(String digits, int n)
{
     
    // For base condition "01123"
    // should return 0
    if (digits.charAt(0) == '0')
    {
        return 0;
    }
 
    int count0 = 1, count1 = 1, count2;
 
    // Using last two calculated values,
    // calculate for ith index
    for(int i = 2; i <= n; i++)
    {
        int dig1 = 0, dig2, dig3 = 0;
         
        // Change boolean to int
        if(digits.charAt(i - 1) != '0')
        {
            dig1 = 1;
        }
        if(digits.charAt(i - 2) == '1')
        {
            dig2 = 1;
        }
        else
            dig2 = 0;
             
        if(digits.charAt(i - 2) == '2' &&
           digits.charAt(i - 1) < '7')
        {
            dig3 = 1;
        }
        count2 = dig1 * count1 +
                 dig2 + dig3 * count0;
         
        count0 = count1;
        count1 = count2;
    }
 
    // Return the required answer
    return count1;
}
 
// Driver Code
public static void main(String[] args)
{
    String digits = "1234";
    int n = digits.length();
 
    // Function call
    System.out.print(countDecodingDP(digits, n));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation
# to count decodings
 
# A Dynamic programming based
# function to count decodings
# in digit sequence
def countDecodingDP(digits, n):
 
    # For base condition "01123"
    # should return 0
    if (digits[0] == '0'):
        return 0;   
 
    count0 = 1; count1 = 1;
 
    # Using last two calculated values,
    # calculate for ith index
    for i in range(2, n + 1):
        dig1 = 0; dig3 = 0;
 
        # Change boolean to int
        if (digits[i-1] != '0'):
            dig1 = 1;
         
        if (digits[i - 2] == '1'):
            dig2 = 1;
        else:
            dig2 = 0;
 
        if (digits[i - 2] == '2' and
            digits[i-1] < '7'):
            dig3 = 1;
         
        count2 = dig1 * count1 +
                 dig2 + dig3 * count0;
 
        count0 = count1;
        count1 = count2;   
 
    # Return the required answer
    return count1;
 
# Driver Code
if __name__ == '__main__':
    digits = "1234";
    n = len(digits);
 
    # Function call
    print(countDecodingDP(digits, n));
 
# This code is contributed by gauravrajput1


C#




// C# implementation to count decodings
using System;
 
class GFG{
 
// A Dynamic programming based function
// to count decodings in digit sequence
static int countDecodingDP(String digits, int n)
{
     
    // For base condition "01123"
    // should return 0
    if (digits[0] == '0')
    {
        return 0;
    }
 
    int count0 = 1, count1 = 1, count2;
 
    // Using last two calculated values,
    // calculate for ith index
    for(int i = 2; i <= n; i++)
    {
        int dig1 = 0, dig2, dig3 = 0;
         
        // Change bool to int
        if(digits[i - 1] != '0')
        {
            dig1 = 1;
        }
        if(digits[i - 2] == '1')
        {
            dig2 = 1;
        }
        else
            dig2 = 0;
             
        if(digits[i - 2] == '2' &&
           digits[i - 1] < '7')
        {
            dig3 = 1;
        }
        count2 = dig1 * count1 +
                 dig2 + dig3 * count0;
         
        count0 = count1;
        count1 = count2;
    }
 
    // Return the required answer
    return count1;
}
 
// Driver Code
public static void Main(String[] args)
{
    String digits = "1234";
    int n = digits.Length;
 
    // Function call
    Console.Write(countDecodingDP(digits, n));
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// Javascript implementation to count decodings
 
// A Dynamic Programming based function
// to count decodings in digit sequence
function countDecodingDP(digits, n)
{
    // For base condition "01123"
    // should return 0
    if (digits[0] == '0')
        return 0;
 
    var count0 = 1, count1 = 1, count2;
 
    // Using last two calculated values,
    // calculate for ith index
    for (var i = 2; i <= n; i++) {
        count2 = ((digits[i - 1] != '0') *  count1) +
                  ((digits[i - 2] == '1') ||
                  (digits[i - 2] == '2' &&
                   digits[i - 1] < '7')) * count0;
        count0 = count1;
        count1 = count2;
    }
 
    // Return the required answer
    return count1;
}
 
// Driver Code
var digits = "1234";
var n = digits.length;
// Function call
document.write( countDecodingDP(digits, n));
 
 
</script>


Output: 

3

Time Complexity: O(N) 
Auxiliary Space Complexity: O(1)
Related Article: Count Possible Decodings of a given Digit Sequence

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments