Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount points from an array that lies inside a semi-circle

Count points from an array that lies inside a semi-circle

Given two pairs (X, Y), (P, Q) and R the coordinate of the center of semi-circle, coordinate of the intersection of semicircle and diameter of the semicircle and, the radius of the semicircle, and an array arr[] of dimension N*2 consisting of the coordinates of few points, the task is to find the number of points from the array that lies inside or on the 
semicircle
Note: The semicircle above the diameter is considered.

Examples:

Input: X = 0, Y = 0, R = 5, P = 5, Q = 0, arr[][] = { {2, 3}, {5, 6}, {-1, 4}, {5, 5} }
Output: 2
Explanation: The points {2, 3} and {-1, 4} are inside the semi-circle.

Input: X = 2, Y = 3, R = 10, P = 12, Q = 3, arr[][] = { {-7, -5}, {0, 6}, {11, 4} }
Output: 2

Approach: The given problem can be solved based on the following observations: 

  • The points that lies on or inside the semicircle must be above or on the diameter of semicircle and the distance between center and that point should be ? R.
  • Suppose a\times x + b\times y + c           is the equation of diameter. 
    The point (R, S) lies above the line if 
    a\times R + b\times S + C>=0
     
  • A point (R, S) lies above the line formed by joining points (X, Y) and (P, Q) if(S - Q)\times(X-P) - (R-P)\times (Y-Q) >= 0

Follow the steps below to solve the problem:

  • Find the equation of line the diameter of the semi-circle from the points (X, Y) and (P, Q).
  • Initialize a variable, say ans, to store the count of required points.
  • Traverse the array arr[] and perform the following operations:
    • Calculate the distance between the points (X, Y) and (P, Q) and store it in a variable, say d.
    • Put arr[i][0] and arr[i][1] in the place of R and S respectively, in the formula 
      (S - Q)\times(X-P) - (R-P)\times (Y-Q)
      and store the result in a variable, say f.
    • Increment the count of ans by 1 if R ? d and f ? 0.
  • After completing the above steps, print the value stored in ans.

Below is the implementation of the above approach:

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
int getPointsIns(int x1, int y1, int radius, int x2,
                 int y2, vector<pair<int, int>> points)
{
    int ans = 0;
     
    // Traverse the array
    for(int i = 0; i < points.size(); i++)
    {
         
        // Stores if a point lies
        // above the diameter or not
        bool condOne = false, condTwo = false;
        if ((points[i].second - y2) *
              (x2 - x1) - (y2 - y1) *
             (points[i].first - x2) >= 0)
        {
            condOne = true;
        }
 
        // Stores if the R is less than or
        // equal to the distance between
        // center and point
        if (radius >= (int)sqrt(pow((y1 - points[i].second), 2) +
                                 pow(x1 - points[i].first, 2)))
        {
            condTwo = true;
        }
        if (condOne && condTwo)
        {
            ans += 1;
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int X = 0;
    int Y = 0;
    int R = 5;
    int P = 5;
    int Q = 0;
 
    vector<pair<int, int>> arr = { make_pair(2, 3),
                                   make_pair(5, 6),
                                   make_pair(-1, 4),
                                   make_pair(5, 5) };
 
    cout << getPointsIns(X, Y, R, P, Q, arr);
    return 0;
}
 
// This code is contributed by nirajgusain5


Java




// Java program for above approach
import java.io.*;
 
class Gfg {
  public static int getPointsIns(int x1, int y1,int radius,
                                 int x2,int y2, pair points[])
  {
    int ans = 0;
    // Traverse the array
    for (int i = 0; i < points.length; i++)
    {
       
      // Stores if a point lies
      // above the diameter or not
      boolean condOne = false, condTwo = false;
      if ((points[i].b - y2) *
          (x2 - x1)- (y2 - y1) *
          (points[i].a - x2)>= 0)
      {
        condOne = true;
      }
 
      // Stores if the R is less than or
      // equal to the distance between
      // center and point
      if (radius >= (int)Math.sqrt(Math.pow((y1 - points[i].b), 2)+
                                   Math.pow(x1 - points[i].a, 2)))
      {
        condTwo = true;
      }
      if (condOne && condTwo)
      {
        ans += 1;
      }
    }
    return ans;
  }
   
  // Driver code
  public static void main(String[] args)
  {
    int X = 0;
    int Y = 0;
    int R = 5;
    int P = 5;
    int Q = 0;
 
    pair arr[] = {new pair(2, 3), new pair(5, 6), new pair(-1, 4), new pair(5,5)};
 
    System.out.print(getPointsIns(X, Y, R, P, Q, arr));
  }
}
class pair
{
  int a;
  int b;
  pair(int a,int b)
  {   
    this.a = a;
    this.b = b;
  }
}


Python3




# Python implementation of above approach
def getPointsIns(x1, y1, radius, x2, y2, points):
    # Stores the count of ans
    ans = 0
 
    # Traverse the array
    for point in points:
 
        # Stores if a point lies
        # above the diameter or not
        condOne = (point[1] - y2) * (x2 - x1) \
                  - (y2 - y1) * (point[0] - x2) >= 0
 
        # Stores if the R is less than or
        # equal to the distance between
        # center and point
 
        condTwo = radius >= ((y1 - point[1]) ** 2 \
                  + (x1 - point[0]) ** 2) ** (0.5)
 
        if condOne and condTwo:
            ans += 1
 
    return ans
 
 
# Driver Code
# Input
X = 0
Y = 0
R = 5
P = 5
Q = 0
arr = [[2, 3], [5, 6], [-1, 4], [5, 5]]
 
print(getPointsIns(X, Y, R, P, Q, arr))


C#




// C# program for above approach
using System;
 
class Gfg
{
  public static int getPointsIns(int x1, int y1,
                                 int radius, int x2,
                                 int y2, pair[] points)
  {
    int ans = 0;
     
    // Traverse the array
    for (int i = 0; i < points.Length; i++) {
 
      // Stores if a point lies
      // above the diameter or not
      bool condOne = false, condTwo = false;
      if ((points[i].b - y2) * (x2 - x1)
          - (y2 - y1) * (points[i].a - x2)
          >= 0) {
        condOne = true;
      }
 
      // Stores if the R is less than or
      // equal to the distance between
      // center and point
      if (radius >= (int)Math.Sqrt(
        Math.Pow((y1 - points[i].b), 2)
        + Math.Pow(x1 - points[i].a, 2))) {
        condTwo = true;
      }
      if (condOne && condTwo) {
        ans += 1;
      }
    }
    return ans;
  }
 
  // Driver code
  public static void Main(string[] args)
  {
    int X = 0;
    int Y = 0;
    int R = 5;
    int P = 5;
    int Q = 0;
 
    pair[] arr = { new pair(2, 3), new pair(5, 6),
                  new pair(-1, 4), new pair(5, 5) };
 
    Console.Write(getPointsIns(X, Y, R, P, Q, arr));
  }
}
public class pair {
  public int a;
  public int b;
  public pair(int a, int b)
  {
    this.a = a;
    this.b = b;
  }
}
 
// This code is contributed by code_hunt.


Javascript




<script>
// Javascript program for above approach
 
function getPointsIns(x1,y1,radius,x2,y2,points)
{
    let ans = 0;
    // Traverse the array
    for (let i = 0; i < points.length; i++)
    {
        
      // Stores if a point lies
      // above the diameter or not
      let condOne = false, condTwo = false;
      if ((points[i][1] - y2) *
          (x2 - x1)- (y2 - y1) *
          (points[i][0] - x2)>= 0)
      {
        condOne = true;
      }
  
      // Stores if the R is less than or
      // equal to the distance between
      // center and point
      if (radius >= Math.sqrt(Math.pow((y1 - points[i][1]), 2)+
                                   Math.pow(x1 - points[i][0], 2)))
      {
        condTwo = true;
      }
       
      if (condOne && condTwo)
      {
        ans += 1;
      }
       
    }
    return ans;
}
 
// Driver code
let X = 0;
    let Y = 0;
    let R = 5;
    let P = 5;
    let Q = 0;
  
    let arr = [[2, 3], [5, 6], [-1, 4], [5, 5]];
  
    document.write(getPointsIns(X, Y, R, P, Q, arr));
   
 
 
 
// This code is contributed by avanitrachhadiya2155
</script>


Output: 

2

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments