Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount pairs whose product modulo 10^9 + 7 is equal to 1

Count pairs whose product modulo 10^9 + 7 is equal to 1

Given an array arr[], the task is to count the number of unordered pairs (arr[i], arr[j]) from the given array such that (arr[i] * arr[j]) % 109 + 7 is equal to 1.

Example:

Input: arr[] = {2, 236426, 280311812, 500000004}
Output: 2
Explanation: Two such pairs from the given array are: 

  1. (2 * 500000004) % 1000000007 = 1
  2. (236426 * 280311812) % 1000000007 = 1

Input: arr[] = {4434, 923094278, 6565}
Output: 1

Naive Approach: The simplest approach to solve the problem is to traverse the array and generate all possible pairs from the given array. For each pair, calculate their product modulo 109 + 7. If it is found to be equal to 1, increase count of such pairs. Finally, print the final count obtained. 

Time Complexity: O(N2
Auxiliary Space: O(N)

Efficient Approach: To optimize the above approach, use the property that if (arr[i] * arr[j]) % 1000000007 =1, then arr[j] is modular inverse of arr[i] under modulo 109 + 7 which is always unique. Follow the steps given below to solve the problem:

  • Initialize a Map hash, to store the frequencies of each element in the array arr[].
  • Initialize a variable pairCount, to store the count of required pairs.
  • Traverse the array and calculate modularInverse which is inverse of arr[i] under 109 + 7 and increase pairCount by hash[modularInverse] and decrease the count of pairCount by 1, if modularInverse is found to be equal to arr[i].
  • Finally, print pairCount / 2 as the required answer as every pair has been counted twice by the above approach.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
#define MOD 1000000007
 
// Iterative Function to calculate (x^y) % MOD
long long int modPower(long long int x,
                       long long int y)
{
    // Initialize result
    long long int res = 1;
 
    // Update x if it exceeds MOD
    x = x % MOD;
 
    // If x is divisible by MOD
    if (x == 0)
        return 0;
 
    while (y > 0) {
 
        // If y is odd
        if (y & 1)
 
            // Multiply x with res
            res = (res * x) % MOD;
 
        // y must be even now
        y = y / 2;
        x = (x * x) % MOD;
    }
    return res;
}
 
// Function to count number of pairs
// whose product modulo 1000000007 is 1
int countPairs(long long int arr[], int N)
{
    // Stores the count of
    // desired pairs
    int pairCount = 0;
 
    // Stores the frequencies of
    // each array element
    map<long long int, int> hash;
 
    // Traverse the array and update
    // frequencies in hash
    for (int i = 0; i < N; i++) {
 
        hash[arr[i]]++;
    }
 
    for (int i = 0; i < N; i++) {
 
        // Calculate modular inverse of
        // arr[i] under modulo 1000000007
        long long int modularInverse
            = modPower(arr[i], MOD - 2);
 
        // Update desired count of pairs
        pairCount += hash[modularInverse];
 
        // If arr[i] and its modular inverse
        // is equal under modulo MOD
        if (arr[i] == modularInverse) {
 
            // Updating count of desired pairs
            pairCount--;
        }
    }
 
    // Return the final count
    return pairCount / 2;
}
 
int main()
{
    long long int arr[]
        = { 2, 236426, 280311812, 500000004 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << countPairs(arr, N);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
     
static final int MOD = 1000000007;
 
// Iterative Function to calculate (x^y) % MOD
static long modPower(long x, int y)
{
     
    // Initialize result
    long res = 1;
 
    // Update x if it exceeds MOD
    x = x % MOD;
 
    // If x is divisible by MOD
    if (x == 0)
        return 0;
 
    while (y > 0)
    {
         
        // If y is odd
        if (y % 2 == 1)
         
            // Multiply x with res
            res = (res * x) % MOD;
 
        // y must be even now
        y = y / 2;
        x = (x * x) % MOD;
    }
    return res;
}
 
// Function to count number of pairs
// whose product modulo 1000000007 is 1
static int countPairs(long arr[], int N)
{
     
    // Stores the count of
    // desired pairs
    int pairCount = 0;
 
    // Stores the frequencies of
    // each array element
    HashMap<Long, Integer> hash = new HashMap<>();
 
    // Traverse the array and update
    // frequencies in hash
    for(int i = 0; i < N; i++)
    {
        if (hash.containsKey(arr[i]))
        {
            hash.put(arr[i], hash.get(arr[i]) + 1);
        }
        else
        {
            hash.put(arr[i], 1);
        }
    }
     
    for(int i = 0; i < N; i++)
    {
         
        // Calculate modular inverse of
        // arr[i] under modulo 1000000007
        long modularInverse = modPower(arr[i],
                                       MOD - 2);
 
        // Update desired count of pairs
        if (hash.containsKey(modularInverse))
            pairCount += hash.get(modularInverse);
         
        // If arr[i] and its modular inverse
        // is equal under modulo MOD
        if (arr[i] == modularInverse)
        {
             
            // Updating count of desired pairs
            pairCount--;
        }
    }
 
    // Return the final count
    return pairCount / 2;
}
 
// Driver code
public static void main(String[] args)
{
    long arr[] = { 2, 236426, 280311812, 500000004 };
    int N = arr.length;
 
    System.out.print(countPairs(arr, N));
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program to implement
# the above approach
from collections import defaultdict
MOD = 1000000007
 
# Iterative Function to
# calculate (x^y) % MOD
def modPower(x, y):
 
    # Initialize result
    res = 1
 
    # Update x if it exceeds
    # MOD
    x = x % MOD
 
    # If x is divisible by
    # MOD
    if (x == 0):
        return 0
 
    while (y > 0):
 
        # If y is odd
        if (y & 1):
 
            # Multiply x with res
            res = (res * x) % MOD
 
        # y must be even now
        y = y // 2
        x = (x * x) % MOD
 
    return res
 
# Function to count number
# of pairs whose product
# modulo 1000000007 is 1
def countPairs(arr, N):
 
    # Stores the count of
    # desired pairs
    pairCount = 0
 
    # Stores the frequencies of
    # each array element
    hash1 = defaultdict(int)
 
    # Traverse the array and
    # update frequencies in hash
    for i in range(N):
        hash1[arr[i]] += 1
 
    for i in range(N):
 
        # Calculate modular inverse
        # of arr[i] under modulo
        # 1000000007
        modularInverse = modPower(arr[i],
                                  MOD - 2)
 
        # Update desired count of pairs
        pairCount += hash1[modularInverse]
 
        # If arr[i] and its modular
        # inverse is equal under
        # modulo MOD
        if (arr[i] == modularInverse):
 
            # Updating count of
            # desired pairs
            pairCount -= 1
 
    # Return the final count
    return pairCount // 2
 
# Driver code
if __name__ == "__main__":
 
    arr = [2, 236426,
           280311812,
           500000004]
    N = len(arr)
    print(countPairs(arr, N))
 
# This code is contributed by Chitranayal


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
static int MOD = 1000000007;
 
// Iterative Function to calculate (x^y) % MOD
static long modPower(long x, int y)
{
     
    // Initialize result
    long res = 1;
 
    // Update x if it exceeds MOD
    x = x % MOD;
 
    // If x is divisible by MOD
    if (x == 0)
        return 0;
 
    while (y > 0)
    {
         
        // If y is odd
        if (y % 2 == 1)
         
            // Multiply x with res
            res = (res * x) % MOD;
 
        // y must be even now
        y = y / 2;
        x = (x * x) % MOD;
    }
    return res;
}
 
// Function to count number of pairs
// whose product modulo 1000000007 is 1
static int countPairs(long []arr, int N)
{
     
    // Stores the count of
    // desired pairs
    int pairCount = 0;
 
    // Stores the frequencies of
    // each array element
    Dictionary<long,
               int> hash = new Dictionary<long,
                                          int>();
 
    // Traverse the array and update
    // frequencies in hash
    for(int i = 0; i < N; i++)
    {
        if (hash.ContainsKey(arr[i]))
        {
            hash.Add(arr[i], hash[arr[i]] + 1);
        }
        else
        {
            hash.Add(arr[i], 1);
        }
    }
     
    for(int i = 0; i < N; i++)
    {
         
        // Calculate modular inverse of
        // arr[i] under modulo 1000000007
        long modularInverse = modPower(arr[i],
                                       MOD - 2);
 
        // Update desired count of pairs
        if (hash.ContainsKey(modularInverse))
            pairCount += hash[modularInverse];
         
        // If arr[i] and its modular inverse
        // is equal under modulo MOD
        if (arr[i] == modularInverse)
        {
             
            // Updating count of desired pairs
            pairCount--;
        }
    }
 
    // Return the final count
    return pairCount / 2;
}
 
// Driver code
public static void Main()
{
    long []arr = { 2, 236426, 280311812, 500000004 };
    int N = arr.Length;
 
    Console.WriteLine(countPairs(arr, N));
}
}
 
// This code is contributed by bgangwar59


Javascript




// JS program to implement
// the above approach
let MOD = 1000000007
 
// Iterative Function to
// calculate (x^y) % MOD
function modPower(x, y)
{
    // Initialize result
    let res = 1
 
    // Update x if it exceeds
    // MOD
    x = x % MOD
 
    // If x is divisible by
    // MOD
    if (x == 0)
        return 0
 
    while (y > 0)
    {
        // If y is odd
        if ((y & 1) == 1)
 
            // Multiply x with res
            res = (res * x) % MOD
 
        // y must be even now
        y = Math.floor(y / 2)
        x = (x * x) % MOD
    }
    return res
}
 
// Function to count number
// of pairs whose product
// modulo 1000000007 is 1
function countPairs(arr, N)
{
    // Stores the count of
    // desired pairs
    let pairCount = 0
 
    // Stores the frequencies of
    // each array element
    hash1 = {}
 
    // Traverse the array and
    // update frequencies in hash
    for (var i = 0; i < N; i++)
    {
        if (!hash1.hasOwnProperty(arr[i]))
            hash1[arr[i]] = 0
        hash1[arr[i]] += 1
    }
     
    for (var i = 0; i < N; i++)
    {
        // Calculate modular inverse
        // of arr[i] under modulo
        // 1000000007
        let modularInverse = modPower(arr[i], MOD - 2)
         
        // Update desired count of pairs
        if (!hash1.hasOwnProperty(modularInverse))
            hash1[modularInverse] = 1
        pairCount += hash1[modularInverse]
         
        // If arr[i] and its modular
        // inverse is equal under
        // modulo MOD
        if (arr[i] == modularInverse)
 
            // Updating count of
            // desired pairs
            pairCount -= 1
    }
 
    // Return the final count
    return Math.floor(pairCount / 2)
}
 
// Driver code
let arr = [2, 236426,
           280311812,
           500000004]
let N = arr.length
console.log(countPairs(arr, N))
 
// This code is contributed by phasing17


Output: 

2

 

Time Complexity: O(NlogN) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments