Given an array arr[] of length N, the task is to find the count of pairs of indices (i, j) (0-based indexing) such that prefix sum of the subarray {arr[0], … arr[i]} is equal to the suffix sum of the subarray {arr[N – 1], …, arr[j]} ( 0 ? i, j < N).
Examples:
Input: arr[] = {1, 2, 1, 1}
Output: 3
Explanation:
The 3 possible pairs of indices are as follows:
- Pair {0, 3}: Prefix Sum of subarray {arr[0]} = 1. Suffix Sum of subarray {arr[3]} = 1.
- Pair {2, 1}: Prefix Sum of subarray {arr[0], .. arr[2]} = 4. Suffix Sum of subarray {arr[3], …, arr[1]} = 4.
- Pair {3, 0}: Prefix Sum of subarray {arr[0], .. arr[3]} = 5. Suffix Sum of subarray {arr[3], …, arr[0]} = 5.
Input: arr[] = {1, 0, -1}
Output: 1
Approach: The idea is to use Hashing to solve this problem. Follow the steps below to solve the problem:
- Traverse the array arr[] and calculate prefix sum for all array indices and store their frequencies in a HashMap.
- Traverse the array in reverse and keep calculating suffix sum up to every array index.
- For every suffix sum obtained, check if it is present in the Map or not. If found to be true, increase count by 1.
- Print the count obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the count of // index pairs having equal // prefix and suffix sums void countPairs( int * arr, int n) { // Maps indices with prefix sums unordered_map< int , int > mp1; int sum = 0; // Traverse the array for ( int i = 0; i < n; i++) { // Update prefix sum sum += arr[i]; // Update frequency in Map mp1[sum] += 1; } sum = 0; int ans = 0; // Traverse the array in reverse for ( int i = n - 1; i >= 0; i--) { // Update suffix sum sum += arr[i]; // Check if any prefix sum of // equal value exists or not if (mp1.find(sum) != mp1.end()) { ans += mp1[sum]; } } // Print the obtained count cout << ans; } // Driver code int main() { // Given array int arr[] = { 1, 2, 1, 1 }; // Given size int n = sizeof (arr) / sizeof (arr[0]); // Function Call countPairs(arr, n); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to find the count of // index pairs having equal // prefix and suffix sums static void countPairs( int []arr, int n) { // Maps indices with prefix sums HashMap<Integer,Integer> mp1 = new HashMap<Integer,Integer>(); int sum = 0 ; // Traverse the array for ( int i = 0 ; i < n; i++) { // Update prefix sum sum += arr[i]; // Update frequency in Map if (mp1.containsKey(sum)){ mp1.put(sum, mp1.get(sum)+ 1 ); } else { mp1.put(sum, 1 ); } } sum = 0 ; int ans = 0 ; // Traverse the array in reverse for ( int i = n - 1 ; i >= 0 ; i--) { // Update suffix sum sum += arr[i]; // Check if any prefix sum of // equal value exists or not if (mp1.containsKey(sum)) { ans += mp1.get(sum); } } // Print the obtained count System.out.print(ans); } // Driver code public static void main(String[] args) { // Given array int arr[] = { 1 , 2 , 1 , 1 }; // Given size int n = arr.length; // Function Call countPairs(arr, n); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach # Function to find the count of # index pairs having equal # prefix and suffix sums def countPairs(arr, n): # Maps indices with prefix sums mp1 = {} sum = 0 # Traverse the array for i in range (n): # Update prefix sum sum + = arr[i] # Update frequency in Map mp1[ sum ] = mp1.get( sum , 0 ) + 1 sum = 0 ans = 0 # Traverse the array in reverse for i in range (n - 1 , - 1 , - 1 ): # Update suffix sum sum + = arr[i] # Check if any prefix sum of # equal value exists or not if ( sum in mp1): ans + = mp1[ sum ] # Print the obtained count print (ans) # Driver code if __name__ = = '__main__' : # Given array arr = [ 1 , 2 , 1 , 1 ] # Given size n = len (arr) # Function Call countPairs(arr, n) # This code is contributed by mohit kumar 29 |
C#
// C# code for above approach using System; using System.Collections.Generic; class GFG{ // Function to find the count of // index pairs having equal // prefix and suffix sums static void countPairs( int [] arr, int n) { // Maps indices with prefix sums Dictionary< int , int > mp1 = new Dictionary< int , int >(); int sum = 0; // Traverse the array for ( int i = 0; i < n; i++) { // Update prefix sum sum += arr[i]; // Update frequency in Map if (mp1.ContainsKey(sum)) { mp1.Add(sum, mp1[sum] + 1); } else { mp1.Add(sum, 1); } } sum = 0; int ans = 0; // Traverse the array in reverse for ( int i = n - 1; i >= 0; i--) { // Update suffix sum sum += arr[i]; // Check if any prefix sum of // equal value exists or not if (mp1.ContainsKey(sum)) { ans += mp1[sum]; } } // Print the obtained count Console.Write(ans); } // Driver code static public void Main () { // Given array int [] arr = { 1, 2, 1, 1 }; // Given size int n = arr.Length; // Function Call countPairs(arr, n); } } // This code is contributed by offbeat |
Javascript
<script> // Javascript program for the above approach // Function to find the count of // index pairs having equal // prefix and suffix sums function countPairs(arr, n) { // Maps indices with prefix sums let mp1 = new Map(); let sum = 0; // Traverse the array for (let i = 0; i < n; i++) { // Update prefix sum sum += arr[i]; // Update frequency in Map if (mp1.has(sum)) { mp1.set(sum, mp1.get(sum) + 1); } else { mp1.set(sum, 1) } } sum = 0; let ans = 0; // Traverse the array in reverse for (let i = n - 1; i >= 0; i--) { // Update suffix sum sum += arr[i]; // Check if any prefix sum of // equal value exists or not if (mp1.has(sum)) { ans += mp1.get(sum); } } // Print the obtained count document.write(ans); } // Driver code // Given array let arr = [ 1, 2, 1, 1 ]; // Given size let n = arr.length // Function Call countPairs(arr, n); // This code is contributed by gfgking </script> |
3
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!