Given two arrays A[] and B[] of N elements each. The task is to find the number of index pairs (i, j) such that i ? j and F(A[i] & A[j]) = B[j] where F(X) is the count of set bits in the binary representation of X.
Examples:
Input: A[] = {2, 3, 1, 4, 5}, B[] = {2, 2, 1, 4, 2}
Output: 4
All possible pairs are (3, 3), (3, 1), (1, 1) and (5, 5)
Input: A[] = {1, 2, 3, 4, 5}, B[] = {2, 2, 2, 2, 2}
Output: 2
Approach: Iterate through all the possible pairs (i, j) and check the count of set bits in their AND value. If the count is equal to B[j] then increment the count.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count of pairs // which satisfy the given condition int solve( int A[], int B[], int n) { int cnt = 0; for ( int i = 0; i < n; i++) for ( int j = i; j < n; j++) // Check if the count of set bits // in the AND value is B[j] if (__builtin_popcount(A[i] & A[j]) == B[j]) { cnt++; } return cnt; } // Driver code int main() { int A[] = { 2, 3, 1, 4, 5 }; int B[] = { 2, 2, 1, 4, 2 }; int size = sizeof (A) / sizeof (A[0]); cout << solve(A, B, size); return 0; } |
Java
// Java implementation of the approach public class GFG { // Function to return the count of pairs // which satisfy the given condition static int solve( int A[], int B[], int n) { int cnt = 0 ; for ( int i = 0 ; i < n; i++) { for ( int j = i; j < n; j++) // Check if the count of set bits // in the AND value is B[j] { if (Integer.bitCount(A[i] & A[j]) == B[j]) { cnt++; } } } return cnt; } // Driver code public static void main(String[] args) { int A[] = { 2 , 3 , 1 , 4 , 5 }; int B[] = { 2 , 2 , 1 , 4 , 2 }; int size = A.length; System.out.println(solve(A, B, size)); } } /* This code contributed by PrinciRaj1992 */ |
Python3
# Python3 implementation of the approach # Function to return the count of pairs # which satisfy the given condition def solve(A, B, n) : cnt = 0 ; for i in range (n) : for j in range (i, n) : # Check if the count of set bits # in the AND value is B[j] c = A[i] & A[j] if ( bin (c).count( '1' ) = = B[j]) : cnt + = 1 ; return cnt; # Driver code if __name__ = = "__main__" : A = [ 2 , 3 , 1 , 4 , 5 ]; B = [ 2 , 2 , 1 , 4 , 2 ]; size = len (A); print (solve(A, B, size)); # This code is contributed # by AnkitRai01 |
C#
// C# Implementation of the above approach using System; class GFG { // Function to return the count of pairs // which satisfy the given condition static int solve( int []A, int []B, int n) { int cnt = 0; for ( int i = 0; i < n; i++) { for ( int j = i; j < n; j++) // Check if the count of set bits // in the AND value is B[j] { if (countSetBits(A[i] & A[j]) == B[j]) { cnt++; } } } return cnt; } // Function to get no of set // bits in binary representation // of positive integer n static int countSetBits( int n) { int count = 0; while (n > 0) { count += n & 1; n >>= 1; } return count; } // Driver code public static void Main(String[] args) { int []A = {2, 3, 1, 4, 5}; int []B = {2, 2, 1, 4, 2}; int size = A.Length; Console.WriteLine(solve(A, B, size)); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript Implementation of the above approach // Function to return the count of pairs // which satisfy the given condition function solve(A, B, n) { var cnt = 0; for ( var i = 0; i < n; i++) { for ( var j = i; j < n; j++) // Check if the count of set bits // in the AND value is B[j] { if (countSetBits(A[i] & A[j]) == B[j]) { cnt++; } } } return cnt; } // Function to get no of set // bits in binary representation // of positive integer n function countSetBits(n) { var count = 0; while (n > 0) { count += n & 1; n >>= 1; } return count; } // Driver code var A = [2, 3, 1, 4, 5]; var B = [2, 2, 1, 4, 2]; var size = A.length; document.write(solve(A, B, size)); // This code is contributed by rutvik_56. </script> |
4
Time Complexity: O(n2)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!