Sunday, January 5, 2025
Google search engine
HomeData Modelling & AICount pairs in an array such that LCM(arr, arr) > min(arr,arr)

Count pairs in an array such that LCM(arr[i], arr[j]) > min(arr[i],arr[j])

Given an array arr[], the task is to find the count of pairs in the array such that LCM(arr[i], arr[j]) > min(arr[i], arr[j]) 

Note: Pairs (arr[i], arr[j]) and (arr[j], arr[i]) are considered identical and will be counted only once.

Examples:  

Input: arr[] = {1, 1, 4, 9} 
Output:
All valid pairs are (1, 4), (1, 9), (1, 4), (1, 9) and (4, 9).

Input: arr[] = {2, 4, 5, 2, 5, 7, 2, 8} 
Output: 24 

Naive approach:

  • Generate all the pair
    • Check the given condition LCM(arr[i], arr[j]) > min(arr[i], arr[j]) 
      • If true, then increment the count by 1.
  • Finally, return count.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the lcm of two number
int lcm(int a, int b) { return (a / __gcd(a, b)) * b; }
 
// Function to return the count of valid pairs
int count_pairs(int n, int arr[])
{
    int count = 0;
 
    // Generate all the pair
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // Check the given condition.
            // If true, then increment the count by 1.
            if (lcm(arr[i], arr[j]) > min(arr[i], arr[j]))
                count++;
        }
    }
 
    // Finally return count.
    return count;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 4, 5, 2, 5, 7, 2, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << count_pairs(n, arr);
    return 0;
}


Java




// Java implementation of the approach
 
import java.util.*;
 
public class GFG {
    // Function to find the lcm of two number
    static int lcm(int a, int b)
    {
        return (a / gcd(a, b)) * b;
    }
    static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Function to return the count of valid pairs
    static int count_pairs(int n, int arr[])
    {
        int count = 0;
 
        // Generate all the pair
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
 
                // Check the given condition.
                // If true, then increment the count by 1.
                if (lcm(arr[i], arr[j])
                    > Math.min(arr[i], arr[j]))
                    count++;
            }
        }
 
        // Finally return count.
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 2, 4, 5, 2, 5, 7, 2, 8 };
        int n = arr.length;
        System.out.println(count_pairs(n, arr));
    }
}
 
// This code is contributed by Karandeep1234


Python3




# python implementation of the approach
import math
 
# Function to find the lcm of two number
def lcm(a, b):
    return (a / math.gcd(a, b)) * b;
 
# Function to return the count of valid pairs
def count_pairs(n, arr):
    count = 0;
 
    # Generate all the pair
    for i in range(0,n):
        for j in range(i+1, n):
            # Check the given condition.
            # If true, then increment the count by 1.
            if (lcm(arr[i], arr[j]) > min(arr[i], arr[j])):
                count+=1;
         
    # Finally return count.
    return count;
 
# Driver Code
arr = [ 2, 4, 5, 2, 5, 7, 2, 8 ];
n = len(arr);
print(count_pairs(n, arr));


C#




// C# implementation of the approach
 
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG {
     
    static int __gcd(int a, int b)
    {    
       if (b == 0)
          return a;
       return __gcd(b, a % b);
    }
     
    // Function to find the lcm of two number
    static int lcm(int a, int b) {
        return (a / __gcd(a, b)) * b;
    }
     
    // Function to return the count of valid pairs
    static int count_pairs(int n, int[] arr)
    {
        int count = 0;
     
        // Generate all the pair
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
     
                // Check the given condition.
                // If true, then increment the count by 1.
                if (lcm(arr[i], arr[j]) > Math.Min(arr[i], arr[j]))
                    count++;
            }
        }
     
        // Finally return count.
        return count;
    }
     
    // Driver Code
    public static void Main() {
        int[] arr = { 2, 4, 5, 2, 5, 7, 2, 8 };
        int n = arr.Length;
        Console.Write(count_pairs(n, arr));
    }   
}


Javascript




// Javascript implementation of the approach
 
//Function to find gcd of two number
function __gcd(a, b)
{
    if(b==0)
        return a;
    return __gcd(b, a%b);
}
// Function to find the lcm of two number
function lcm(a, b) {
    return (a / __gcd(a, b)) * b;
     
}
 
// Function to return the count of valid pairs
function count_pairs(n, arr)
{
    let count = 0;
 
    // Generate all the pair
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
 
            // Check the given condition.
            // If true, then increment the count by 1.
            if (lcm(arr[i], arr[j]) > Math.min(arr[i], arr[j]))
                count++;
        }
    }
 
    // Finally return count.
    return count;
}
 
// Driver Code
    let arr = [2, 4, 5, 2, 5, 7, 2, 8 ];
    let n = arr.length;
    document.write(count_pairs(n, arr));


Output

24

Time Complexity: O(n2*log(m)), where n and m are the length of the given array arr and maximum element in the array respectively.
Auxiliary Space: O(1)

Approach: It is observed that only the pairs of the form (arr[i], arr[j]) where arr[i] = arr[j] won’t satisfy the given condition. So, the problem now gets reduced to finding the number of pairs (arr[i], arr[j]) such that arr[i] != arr[j].

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of valid pairs
int count_pairs(int n, int a[])
{
    // Store frequencies of array elements
    unordered_map<int, int> frequency;
    for (int i = 0; i < n; i++) {
        frequency[a[i]]++;
    }
 
    int count = 0;
 
    // Count of pairs (arr[i], arr[j])
    // where arr[i] = arr[j]
    for (auto x : frequency) {
        int f = x.second;
        count += f * (f - 1) / 2;
    }
 
    // Count of pairs (arr[i], arr[j]) where
    // arr[i] != arr[j], i.e. Total pairs - pairs
    // where arr[i] = arr[j]
    return ((n * (n - 1)) / 2) - count;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 4, 5, 2, 5, 7, 2, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << count_pairs(n, arr);
    return 0;
}


Java




// Java implementation of the approach
import java.util.HashMap;
import java.util.Map;
 
class GfG
{
 
    // Function to return the count of valid pairs
    static int count_pairs(int n, int a[])
    {
        // Store frequencies of array elements
        HashMap<Integer, Integer> frequency = new HashMap<>();
        for (int i = 0; i < n; i++)
        {
             
            if (!frequency.containsKey(a[i]))
                frequency.put(a[i], 0);
            frequency.put(a[i], frequency.get(a[i])+1);
        }
     
        int count = 0;
     
        // Count of pairs (arr[i], arr[j])
        // where arr[i] = arr[j]
        for (Map.Entry<Integer, Integer> x: frequency.entrySet())
        {
            int f = x.getValue();
            count += f * (f - 1) / 2;
        }
     
        // Count of pairs (arr[i], arr[j]) where
        // arr[i] != arr[j], i.e. Total pairs - pairs
        // where arr[i] = arr[j]
        return ((n * (n - 1)) / 2) - count;
    }
 
    // Driver code
    public static void main(String []args)
    {
         
        int arr[] = { 2, 4, 5, 2, 5, 7, 2, 8 };
        int n = arr.length;
        System.out.println(count_pairs(n, arr));
    }
}
     
// This code is contributed by Rituraj Jain


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of valid pairs
def count_pairs(n, a) :
 
    # Store frequencies of array elements
    frequency = dict.fromkeys(a, 0)
    for i in range(n) :
        frequency[a[i]] += 1
 
    count = 0
 
    # Count of pairs (arr[i], arr[j])
    # where arr[i] = arr[j]
    for f in frequency.values() :
        count += f * (f - 1) // 2
     
    # Count of pairs (arr[i], arr[j]) where
    # arr[i] != arr[j], i.e. Total pairs - pairs
    # where arr[i] = arr[j]
    return ((n * (n - 1)) // 2) - count
 
# Driver Code
if __name__ == "__main__" :
     
    arr = [ 2, 4, 5, 2,
            5, 7, 2, 8 ]
    n = len(arr)
    print(count_pairs(n, arr))
 
# This code is contributed by Ryuga


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GfG
{
 
    // Function to return the count of valid pairs
    static int count_pairs(int n, int []arr)
    {
        // Store frequencies of array elements
        Dictionary<int,int> mp = new Dictionary<int,int>();
        for (int i = 0 ; i < n; i++)
        {
            if(mp.ContainsKey(arr[i]))
            {
                var val = mp[arr[i]];
                mp.Remove(arr[i]);
                mp.Add(arr[i], val + 1);
            }
            else
            {
                mp.Add(arr[i], 1);
            }
        }
        int count = 0;
     
        // Count of pairs (arr[i], arr[j])
        // where arr[i] = arr[j]
        foreach(KeyValuePair<int, int> x in mp)
        {
            int f = x.Value;
            count += f * (f - 1) / 2;
        }
     
        // Count of pairs (arr[i], arr[j]) where
        // arr[i] != arr[j], i.e. Total pairs - pairs
        // where arr[i] = arr[j]
        return ((n * (n - 1)) / 2) - count;
    }
 
    // Driver code
    public static void Main(String []args)
    {
         
        int []arr = { 2, 4, 5, 2, 5, 7, 2, 8 };
        int n = arr.Length;
        Console.WriteLine(count_pairs(n, arr));
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count of valid pairs
function count_pairs(n, a)
{
    // Store frequencies of array elements
    var frequency = new Map();
    for (var i = 0; i < n; i++) {
        if(frequency.has(a[i]))
            frequency.set(a[i], frequency.get(a[i])+1)
        else
            frequency.set(a[i], 1)
    }
 
    var count = 0;
 
    // Count of pairs (arr[i], arr[j])
    // where arr[i] = arr[j]
    frequency.forEach((value, key) => {
         
        var f = value;
        count += f * (f - 1) / 2;
    });
 
    // Count of pairs (arr[i], arr[j]) where
    // arr[i] != arr[j], i.e. Total pairs - pairs
    // where arr[i] = arr[j]
    return ((n * (n - 1)) / 2) - count;
}
 
// Driver Code
var arr = [2, 4, 5, 2, 5, 7, 2, 8];
var n = arr.length;
document.write( count_pairs(n, arr));
 
 
</script>


Output

24

Complexity Analysis:

  • Time Complexity: O(n), where n represents the size of the given array.
  • Auxiliary Space: O(n), where n represents the size of the given array.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments