Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount of x in given range such that bitwise XOR of ...

Count of x in given range such that bitwise XOR of x, (x+1) and (x+2), (x+3) are equal

Given an integer N, the task is to count the number of integers (say x) in the range [0, 2N−1] such that x⊕(x+1) = (x+2)⊕(x+3). [where represents bitwise Xor]

Examples:

Input: N = 1
Output: 1
Explanation: Only 0 is the valid x, as, 0 ⊕ 1 = 2 ⊕ 3 = 1

Input: N = 3
Output: 4

 

Naive Approach: The simple approach to solve the given problem is to generate all possible values of x in the range [0, 2N−1] and check if they satisfy the given criteria i.e x⊕(x+1) = (x+2)⊕(x+3)

Follow the steps mentioned below to implement the idea:

  • Iterate from i = 0 to N.
    • Check if (i ⊕ (i+1)) = ((i+2) ⊕ (i+3))
    • If the condition is satisfied increment the count of such numbers.
  • Return the final count as the answer.

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to find number of integers
// satisfying the condition
int countOfvalues(int N)
{
    // Stores the resultant count of pairs
    int count = 0;
 
    for (int i = 0; i < (1 << N); i++) {
 
        // Iterate over the range
        if ((i ^ (i + 1)) == ((i + 2) ^ (i + 3)))
            count += 1;
    }
    return count;
}
// Driver Code
int main()
{
    int N = 3;
 
    // Function call
    cout << countOfvalues(N);
    return 0;
}
 
// This code is contributed by Rohit Pradhan


Java




// Java code to implement the approach
class GFG {
 
  // Function to find number of integers
  // satisfying the condition
  public static int countOfvalues(int N)
  {
 
    // Stores the resultant count of pairs
    int count = 0;
 
    for (int i = 0; i < (1 << N); i++) {
 
      // Iterate over the range
      if ((i ^ (i + 1)) == ((i + 2) ^ (i + 3)))
        count += 1;
    }
    return count;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int N = 3;
 
    // Function call
    System.out.println(countOfvalues(N));
  }
}
 
// This code is contributed by phasing17


Python3




# Python3 code to implement the approach
 
# Function to find number of integers
# satisfying the condition
def countOfvalues(N):
         
    # Stores the resultant count of pairs
    count = 0
 
    for i in range(0, 2**N):
 
       # Iterate over the range
        if i ^ (i + 1) == (i + 2) ^ (i + 3):
            count += 1
 
    return count
 
 
# Driver Code
if __name__ == '__main__':
    N = 3
     
    # Function call
    print(countOfvalues(N))


C#




// C# Program of the above approach
using System;
 
class GFG
{
 
  // Function to find number of integers
  // satisfying the condition
  public static int countOfvalues(int N)
  {
 
    // Stores the resultant count of pairs
    int count = 0;
 
    for (int i = 0; i < (1 << N); i++) {
 
      // Iterate over the range
      if ((i ^ (i + 1)) == ((i + 2) ^ (i + 3)))
        count += 1;
    }
    return count;
  }
 
  // Driver Code
  public static void Main ()
  {
    int N = 3;
 
    // Function call
    Console.Write(countOfvalues(N));
  }
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find number of integers
       // satisfying the condition
       function countOfvalues(N)
       {
        
           // Stores the resultant count of pairs
           let count = 0;
 
           for (let i = 0; i < (1 << N); i++) {
 
               // Iterate over the range
               if ((i ^ (i + 1)) == ((i + 2) ^ (i + 3)))
                   count += 1;
           }
           return count;
       }
        
       // Driver Code
       let N = 3;
 
       // Function call
       document.write(countOfvalues(N));
 
   // This code is contributed by Potta Lokesh
   </script>


Output

4

Time Complexity: O(2N
Auxiliary Space: O(1)

Efficient Approach: The problem can be solved efficiently based on the following mathematical idea:

  • If x is such that it is a even number then x+2 is also a even number and both (x+1) and (x+3) will be odd numbers. 
  • Now two consecutive even and odd number has only a single bit difference only on their LSB position.
  • So the bitwise XOR of (x and x+1) and (x+2 and x+3) both will be 1, when x is even.
  • Therefore all the even numbers in the given range [0, 2N−1] is a possible value of x.

So total number of such values are (2N – 1)/2 = 2N-1

Follow the illustration below to visualize the idea better:

Illustration:

Consider N = 3. So the numbers are in range [0, 7]

All even numbers in the range are 0, 2, 4 and 6

=> When x = 0: 0 ⊕ 1 = 1 and 2 ⊕ 3 = 1. Therefore the relation holds
=> When x = 2: 2 ⊕ 3 = 1 and 4 ⊕ 5 = 1. Therefore the relation holds
=> When x = 4. 4 ⊕ 5 = 1 and 6 ⊕ 7 = 1. Therefore the relation holds
=> When x = 6: 6 ⊕ 7 = 1 and 8 ⊕ 9 = 1. Therefore the relation holds.

Now for the odd numbers if it is done:

=> When x = 1: 1 ⊕ 2 = 3 and 3 ⊕ 4 = 7. Therefore the relation does not hold.
=> When x = 3: 3 ⊕ 4 = 7 and 5 ⊕ 6 = 3. Therefore the relation does not hold.
=> When x = 5: 5 ⊕ 6 = 3 and 7 ⊕ 8 = 15. Therefore the relation does not hold.
=> When x = 7: 7 ⊕ 8 = 15 and 9 ⊕ 10 = 3. Therefore the relation does not hold.

So total possible values are 4 = 23-1

Therefore to get the answer calculate the value of 2N-1 for given N

Below is the implementation of the above approach.

C++




// C++ code to implement the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate
// the number of possible values
int countValues(int N) { return pow(2, N - 1); }
 
// Driver Code
int main()
{
    int N = 3;
    // Function call
    cout << countValues(N);
    return 0;
}
 
// This code is contributed by Rohit Pradhan


Java




// Java code to implement the above approach
class GFG {
 
  // Function to calculate
  // the number of possible values
  public static int countValues(int N) { return (int)Math.pow(2, N - 1); }
 
  public static void main(String[] args) {
    int N = 3;
 
    // Function call
    System.out.println(countValues(N));
  }
}
 
//This code is contributed by phasing17


Python3




# Python code to implement the above approach
 
# Function to calculate
# the number of possible values
def countOfValues (N):
    return pow(2, N - 1)
 
# Driver code
if __name__ == '__main__':
    N = 3
     
    # Function call
    res = countOfValues(N)
    print(res)


C#




// C# program for above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
  // Function to calculate
  // the number of possible values
  public static int countValues(int N)
  {
    return (int)Math.Pow(2, N - 1);
 
  }
 
  // Driver code
  public static void Main(String[] args)
  {
    int N = 3;
 
    // Function call
    Console.Write(countValues(N));
  }
}
 
// This code is contributed by code_hunt.


Javascript




<script>
 
// JavaScript code to implement the above approach
 
// Function to calculate
// the number of possible values
function countValues(N)
{
    return Math.pow(2, N - 1);
}
 
// Driver Code
let N = 3;
 
// Function call
document.write(countValues(N));
 
// This code is contributed by shinjanpatra
 
</script>


Output

4

Time Complexity: O(log(N)) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments