Sunday, January 19, 2025
Google search engine
HomeData Modelling & AICount of ways to traverse a Matrix and return to origin in...

Count of ways to traverse a Matrix and return to origin in K steps

Given three integers N, M and K, where N and M are the dimensions of the matrix and K is the maximum possible steps, the task is to count the number ways to start from (0, 0) and return traversing the matrix by using K steps only. 
Note: In each step, one can move up, down, left, right, or stay at the current position. The answer could be large, so print the answer modulo 109 + 7
Examples: 

Input: N = 2, M = 2, K = 2 
Output:
Explanation: 
Three ways are: 
1)Stay, Stay. 
2)Up, Down 
3)Right, Left
Input: N = 3, M = 3, K = 4 
Output: 23 

Approach: The problem can also be solved using Memoization technique. Follow the steps below to solve the problem: 

  • Starting from position (0, 0), recursively call every possible position and decrease the value of steps by 1. 
  • Create a 3D array of size N * M * K ( DP[N][M][S] )  
Possible ways for each step
can be calculated by:
DP[i][j][k]
= Recursion(i+1, j, k-1) +
Recursion(i-1, j, k-1) +
Recursion(i, j-1, k-1) +
Recursion(i, j+1, k-1) +
Recursion(i, j, k-1).
With base condition returning 0,
whenever
i >= l or i = b or j < 0 or k < 0.

Below is the implementation of the above approach: 

C++




// C++ program to count total
// number of ways to return
// to origin after completing
// given number of steps.
 
#include <bits/stdc++.h>
using namespace std;
#define MOD 1000000007
 
long long dp[101][101][101];
int N, M, K;
 
// Function Initialize dp[][][]
// array with -1
void Initialize()
{
 
    for (int i = 0; i <= 100; i++)
        for (int j = 0; j <= 100; j++)
            for (int z = 0; z <= 100; z++)
                dp[i][j][z] = -1;
}
 
// Function returns the total count
int CountWays(int i, int j, int k)
{
    if (i >= N || i < 0
        || j >= M || j < 0 || k < 0)
        return 0;
 
    if (i == 0 && j == 0
        && k == 0)
        return 1;
 
    if (dp[i][j][k] != -1)
        return dp[i][j][k];
    else
        dp[i][j][k]
            = (CountWays(i + 1, j, k - 1) % MOD
               + CountWays(i - 1, j, k - 1) % MOD
               + CountWays(i, j - 1, k - 1) % MOD
               + CountWays(i, j + 1, k - 1) % MOD
               + CountWays(i, j, k - 1) % MOD)
              % MOD;
 
    return dp[i][j][k];
}
 
// Driver Program
int main()
{
    N = 3;
    M = 3;
    K = 4;
 
    Initialize();
    cout << CountWays(0, 0, K)
         << "\n";
 
    return 0;
}


Java




// Java program to count total
// number of ways to return
// to origin after completing
// given number of steps.
class GFG{
     
static int [][][] dp = new int[101][101][101];
static int N, M, K;
static int MOD = 1000000007;
     
// Function Initialize dp[][][]
// array with -1
public static void Initialize()
{
    for(int i = 0; i <= 100; i++)
       for(int j = 0; j <= 100; j++)
          for(int z = 0; z <= 100; z++)
             dp[i][j][z] = -1;
}
     
// Function returns the total count
public static int CountWays(int i, int j, int k)
{
    if (i >= N || i < 0 ||
        j >= M || j < 0 || k < 0)
        return 0;
     
    if (i == 0 && j == 0 && k == 0)
        return 1;
     
    if (dp[i][j][k] != -1)
        return dp[i][j][k];
     
    else
        dp[i][j][k] = (CountWays(i + 1, j, k - 1) % MOD +
                       CountWays(i - 1, j, k - 1) % MOD +
                       CountWays(i, j - 1, k - 1) % MOD +
                       CountWays(i, j + 1, k - 1) % MOD +
                       CountWays(i, j, k - 1) % MOD) % MOD;
     
    return dp[i][j][k];
}
 
// Driver code
public static void main(String[] args)
{
    N = 3;
    M = 3;
    K = 4;
     
    Initialize();
    System.out.println(CountWays(0, 0, K));
}
}
 
// This code is contributed by grand_master


Python3




# Python3 program to count total
# number of ways to return
# to origin after completing
# given number of steps.
MOD = 1000000007
 
dp = [[[0 for i in range(101)]
          for i in range(101)]
          for i in range(101)]
N, M, K = 0, 0, 0
 
# Function Initialize dp[][][]
# array with -1
def Initialize():
 
    for i in range(101):
        for j in range(101):
            for z in range(101):
                dp[i][j][z] = -1
 
# Function returns the total count
def CountWays(i, j, k):
 
    if (i >= N or i < 0 or
        j >= M or j < 0 or k < 0):
        return 0
 
    if (i == 0 and j == 0 and k == 0):
        return 1
 
    if (dp[i][j][k] != -1):
        return dp[i][j][k]
    else:
        dp[i][j][k] = (CountWays(i + 1, j, k - 1) % MOD +
                       CountWays(i - 1, j, k - 1) % MOD +
                       CountWays(i, j - 1, k - 1) % MOD +
                       CountWays(i, j + 1, k - 1) % MOD +
                       CountWays(i, j, k - 1) % MOD) % MOD
    return dp[i][j][k]
 
# Driver code
if __name__ == '__main__':
     
    N = 3
    M = 3
    K = 4
 
    Initialize()
    print(CountWays(0, 0, K))
 
# This code is contributed by mohit kumar 29


C#




// C# program to count total
// number of ways to return
// to origin after completing
// given number of steps.
using System;
 
class GFG{
     
static int [,,] dp = new int[101, 101, 101];
static int N, M, K;
static int MOD = 1000000007;
     
// Function Initialize [,]dp[]
// array with -1
public static void Initialize()
{
    for(int i = 0; i <= 100; i++)
        for(int j = 0; j <= 100; j++)
            for(int z = 0; z <= 100; z++)
                dp[i, j, z] = -1;
}
     
// Function returns the total count
public static int CountWays(int i, int j, int k)
{
    if (i >= N || i < 0 ||
        j >= M || j < 0 || k < 0)
        return 0;
     
    if (i == 0 && j == 0 && k == 0)
        return 1;
     
    if (dp[i, j, k] != -1)
        return dp[i, j, k];
     
    else
        dp[i, j, k] = (CountWays(i + 1, j, k - 1) % MOD +
                       CountWays(i - 1, j, k - 1) % MOD +
                       CountWays(i, j - 1, k - 1) % MOD +
                       CountWays(i, j + 1, k - 1) % MOD +
                       CountWays(i, j, k - 1) % MOD) % MOD;
     
    return dp[i, j, k];
}
 
// Driver code
public static void Main(String[] args)
{
    N = 3;
    M = 3;
    K = 4;
     
    Initialize();
    Console.WriteLine(CountWays(0, 0, K));
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// JavaScript program to count total
// number of ways to return
// to origin after completing
// given number of steps.
 
var MOD =  1000000007;
 
var dp = Array.from(Array(101), ()=>Array(101));
for(var i =0; i<101; i++)
        for(var j =0; j<101; j++)
            dp[i][j] = new Array(101).fill(-1);
var N, M, K;
 
// Function returns the total count
function CountWays(i, j, k)
{
    if (i >= N || i < 0
        || j >= M || j < 0 || k < 0)
        return 0;
 
    if (i == 0 && j == 0
        && k == 0)
        return 1;
 
    if (dp[i][j][k] != -1)
        return dp[i][j][k];
    else
        dp[i][j][k]
            = (CountWays(i + 1, j, k - 1) % MOD
               + CountWays(i - 1, j, k - 1) % MOD
               + CountWays(i, j - 1, k - 1) % MOD
               + CountWays(i, j + 1, k - 1) % MOD
               + CountWays(i, j, k - 1) % MOD)
              % MOD;
 
    return dp[i][j][k];
}
 
// Driver Program
N = 3;
M = 3;
K = 4;
document.write( CountWays(0, 0, K))
 
 
</script>


Output

23

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a 3D DP to store the solution of the subproblems and initialize it with 0.
  • Initialize the DP  with base cases dp[0][0][0] = 1.
  • Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP
  • Return the final solution stored in dp[0][0][k].

Implementation :

C++




// C++ program for above approach
 
#include <bits/stdc++.h>
using namespace std;
#define MOD 1000000007
 
 
// Function returns the total count
int CountWays(int n, int m, int k)
{   
    // Initialize dp to store
    // computations of subproblems
      int dp[k+1][n+1][m+1];
    memset(dp, 0, sizeof(dp));
       
  // Base Case
    dp[0][0][0] = 1;
 
     // iterate over subproblems and get the current
    // solution for previous computations
    for (int l = 1; l <= k; l++) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
               
                  // update DP current value
                dp[i][j][l] = ((i > 0 ? dp[i - 1][j][l - 1] : 0)
                    + (i < n - 1 ? dp[i + 1][j][l - 1] : 0)
                    + (j > 0 ? dp[i][j - 1][l - 1] : 0)
                    + (j < m - 1 ? dp[i][j + 1][l - 1] : 0)
                    + dp[i][j][l - 1]) % MOD;
            }
        }
    }
     
      // return final answer
    return dp[0][0][k];
}
 
// Driver Program
int main()
{
    int N = 3;
    int M = 3;
    int K = 4;
     
      // function call
    cout << CountWays(N, M, K) << "\n";
 
    return 0;
}
 
// This code is contributed by bhardwajji.


Python3




# Python 3 program for above approach
 
MOD = 1000000007
 
# Function returns the total count
def CountWays(n, m, k):
    # Initialize dp to store
    # computations of subproblems
    dp = [[[0 for i in range(m+1)] for j in range(n+1)] for k in range(k+1)]
       
    # Base Case
    dp[0][0][0] = 1
 
    # iterate over subproblems and get the current
    # solution for previous computations
    for l in range(1, k+1):
        for i in range(n):
            for j in range(m):
                # update DP current value
                dp[l][i][j] = ((dp[l-1][i-1][j] if i > 0 else 0)
                               + (dp[l-1][i+1][j] if i < n-1 else 0)
                               + (dp[l-1][i][j-1] if j > 0 else 0)
                               + (dp[l-1][i][j+1] if j < m-1 else 0)
                               + dp[l-1][i][j]) % MOD
     
    # return final answer
    return dp[k][0][0]
 
# Driver Program
if __name__ == "__main__":
    N = 3
    M = 3
    K = 4
     
    # function call
    print(CountWays(N, M, K))


C#




using System;
 
class GFG {
  const int MOD = 1000000007;
 
  // Function returns the total count
  static int CountWays(int n, int m, int k)
  {
    // Initialize dp to store
    // computations of subproblems
    int[][][] dp = new int[k + 1][][];
    for (int i = 0; i <= k; i++) {
      dp[i] = new int[n + 1][];
      for (int j = 0; j <= n; j++) {
        dp[i][j] = new int[m + 1];
      }
    }
 
    // Base Case
    dp[0][0][0] = 1;
 
    // iterate over subproblems and get the current
    // solution for previous computations
    for (int l = 1; l <= k; l++) {
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
          // update DP current value
          dp[l][i][j]
            = ((i > 0 ? dp[l - 1][i - 1][j] : 0)
               + (i < n - 1
                  ? dp[l - 1][i + 1][j]
                  : 0)
               + (j > 0 ? dp[l - 1][i][j - 1]
                  : 0)
               + (j < m - 1
                  ? dp[l - 1][i][j + 1]
                  : 0)
               + dp[l - 1][i][j])
            % MOD;
        }
      }
    }
 
    // return final answer
    return dp[k][0][0];
  }
 
  // Driver Program
  static void Main(string[] args)
  {
    int N = 3;
    int M = 3;
    int K = 4;
 
    // function call
    Console.WriteLine(CountWays(N, M, K));
  }
}


Javascript




const MOD = 1000000007;
 
function CountWays(n, m, k) {
    const dp = new Array(k + 1)
        .fill(null)
        .map(() =>
            new Array(n + 1)
                .fill(null)
                .map(() =>
                    new Array(m + 1).fill(0)
                )
        );
 
    // Base Case
    dp[0][0][0] = 1;
 
    // Iterate over subproblems and get the current solution for previous computations
    for (let l = 1; l <= k; l++) {
        for (let i = 0; i < n; i++) {
            for (let j = 0; j < m; j++) {
                // Update DP current value
                dp[l][i][j] = (
                    (i > 0 ? dp[l - 1][i - 1][j] : 0) +
                    (i < n - 1 ? dp[l - 1][i + 1][j] : 0) +
                    (j > 0 ? dp[l - 1][i][j - 1] : 0) +
                    (j < m - 1 ? dp[l - 1][i][j + 1] : 0) +
                    dp[l - 1][i][j]
                ) % MOD;
            }
        }
    }
 
    // Return final answer
    return dp[k][0][0];
}
 
// Driver Program
const N = 3;
const M = 3;
const K = 4;
 
// Function call
console.log(CountWays(N, M, K));


Output

23

Time Complexity : O(N*K*M)
Auxiliary Space : O(N*K*M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments