Given a triangular pyramid with its vertices marked as O, A, B and C and a number N, the task is to find the number of ways such that a person starting from the origin O initially reaches back to the origin in N steps. In a single step, a person can go to any of its adjacent vertices.
Examples:
Input: N = 1
Output: 0
Explanation:
In 1 step, it is impossible to be again at position O.
Input: N = 2
Output: 3
Explanation:
The three ways to reach back to O in two steps are:
O->A->O
O->B->O
O->C->O
Input: N = 3
Output: 6
Explanation:
The 6 ways to reach back to O in three steps are:
O->A->B->O
O->A->C->O
O->B->A->O
O->B->C->O
O->C->A->O
O->C->B->O
Approach: The idea is to use the concept of Dynamic programming.
- A table T[][] is created where the row represents the number of ways and the column represents the position.
- In order to fill the table, one observation needs to be made. That is, we can go back to the position O if we are not at O in the previous step.
- Therefore, the number of ways to reach the origin O in the current step is equal to the sum of the number of ways the person is not at the origin O in the previous steps.
- Lets understand how the table is filled for N = 3:
0 1 2 3 O 1 0 3 6 A 0 1 2 7 B 0 1 2 7 C 0 1 2 7
- The base case for this table is when N = 1. We can reach the origin in 1 step from all the positions except O.
Below is the implementation of the above approach:
Using Tabulation Approach
C++
// C++ program for Dynamic // Programming implementation of // Number of Path in a Triangular // pyramid #include <bits/stdc++.h> using namespace std; // Function to return the number of // ways we can reach back to the // initial position O int fun( int n) { int sum=0; for ( int i=1;i<n;i++) { sum=sum*3; if (i%2) { sum+=3; } else { sum-=3; } } return sum; } // Driver code int main() { int n = 3; cout << fun(n) << endl; n = 4; cout << fun(n) << endl; return 0; } |
Java
// Java program for dynamic programming // implementation of number of path in // a triangular pyramid class GFG{ // Function to return the number of // ways we can reach back to the // initial position O static int count( int n) { // If n is 0 then there is // 1 solution if (n == 0 ) return 1 ; // If n is equal to 1 then we // can't reach at position O if (n == 1 ) return 0 ; int [][]dp = new int [ 4 ][n + 1 ]; // Initial Conditions // Represents position O dp[ 0 ][ 0 ] = 1 ; // Represents position A dp[ 1 ][ 0 ] = 0 ; // Represents position B dp[ 2 ][ 0 ] = 0 ; // Represents position C dp[ 3 ][ 0 ] = 0 ; // Filling the table for ( int i = 1 ; i <= n; i++) { // The number of ways to reach // a particular position (say X) // at the i'th step is equivalent // to the sum of the number // of ways the person is not at // position X in the last step. int countPositionO = dp[ 1 ][i - 1 ] + dp[ 2 ][i - 1 ] + dp[ 3 ][i - 1 ]; int countPositionA = dp[ 0 ][i - 1 ] + dp[ 2 ][i - 1 ] + dp[ 3 ][i - 1 ]; int countPositionB = dp[ 0 ][i - 1 ] + dp[ 1 ][i - 1 ] + dp[ 3 ][i - 1 ]; int countPositionC = dp[ 0 ][i - 1 ] + dp[ 1 ][i - 1 ] + dp[ 2 ][i - 1 ]; dp[ 0 ][i] = countPositionO; dp[ 1 ][i] = countPositionA; dp[ 2 ][i] = countPositionB; dp[ 3 ][i] = countPositionC; } return dp[ 0 ][n]; } // Driver code public static void main(String[] args) { int n = 3 ; System.out.print(count(n) + "\n" ); n = 4 ; System.out.print(count(n) + "\n" ); } } // This code is contributed by sapnasingh4991 |
Python3
# Python3 program for Dynamic # Programming implementation of # Number of Path in a Triangular # pyramid # Function to return the number of # ways we can reach back to the # initial position O def count(n): # If n is 0 then there is # 1 solution if (n = = 0 ): return 1 # If n is equal to 1 # then we can't reach at position O if (n = = 1 ): return 0 dp = [[ 0 for i in range (n + 1 )] for j in range ( 4 )] # Initial Conditions # Represents position O dp[ 0 ][ 0 ] = 1 # Represents position A dp[ 1 ][ 0 ] = 0 # Represents position B dp[ 2 ][ 0 ] = 0 # Represents position C dp[ 3 ][ 0 ] = 0 # Filling the table for i in range ( 1 , n + 1 ): # The number of ways to reach # a particular position (say X) # at the i'th step is equivalent # to the sum of the number # of ways the person is not at # position X in the last step. countPositionO = (dp[ 1 ][i - 1 ] + dp[ 2 ][i - 1 ] + dp[ 3 ][i - 1 ]) countPositionA = (dp[ 0 ][i - 1 ] + dp[ 2 ][i - 1 ] + dp[ 3 ][i - 1 ]) countPositionB = (dp[ 0 ][i - 1 ] + dp[ 1 ][i - 1 ] + dp[ 3 ][i - 1 ]) countPositionC = (dp[ 0 ][i - 1 ] + dp[ 1 ][i - 1 ] + dp[ 2 ][i - 1 ]) dp[ 0 ][i] = countPositionO dp[ 1 ][i] = countPositionA dp[ 2 ][i] = countPositionB dp[ 3 ][i] = countPositionC return dp[ 0 ][n] # Driver code if __name__ = = "__main__" : n = 3 print (count(n)) n = 4 print (count(n)) # This code is contributed by ChitraNayal |
C#
// C# program for dynamic programming // implementation of number of path in // a triangular pyramid using System; class GFG{ // Function to return the number // of ways we can reach back to // the initial position O static int count( int n) { // If n is 0 then there is // 1 solution if (n == 0) return 1; // If n is equal to 1 then we // can't reach at position O if (n == 1) return 0; int [,]dp = new int [4, n + 1]; // Initial Conditions // Represents position O dp[0, 0] = 1; // Represents position A dp[1, 0] = 0; // Represents position B dp[2, 0] = 0; // Represents position C dp[3, 0] = 0; // Filling the table for ( int i = 1; i <= n; i++) { // The number of ways to reach // a particular position (say X) // at the i'th step is equivalent // to the sum of the number // of ways the person is not at // position X in the last step. int countPositionO = dp[1, i - 1] + dp[2, i - 1] + dp[3, i - 1]; int countPositionA = dp[0, i - 1] + dp[2, i - 1] + dp[3, i - 1]; int countPositionB = dp[0, i - 1] + dp[1, i - 1] + dp[3, i - 1]; int countPositionC = dp[0, i - 1] + dp[1, i - 1] + dp[2, i - 1]; dp[0, i] = countPositionO; dp[1, i] = countPositionA; dp[2, i] = countPositionB; dp[3, i] = countPositionC; } return dp[0, n]; } // Driver code public static void Main(String[] args) { int n = 3; Console.Write(count(n) + "\n" ); n = 4; Console.Write(count(n) + "\n" ); } } // This code is contributed by sapnasingh4991 |
Javascript
<script> // Javascript program for dynamic programming // implementation of number of path in // a triangular pyramid // Function to return the number of // ways we can reach back to the // initial position O function count(n) { // If n is 0 then there is // 1 solution if (n == 0) return 1; // If n is equal to 1 then we // can't reach at position O if (n == 1) return 0; let dp = new Array(4); for (let i = 0; i < 4; i++) { dp[i] = new Array(n + 1); for (let j = 0; j < (n + 1); j++) { dp[i][j] = 0; } } // Initial Conditions // Represents position O dp[0][0] = 1; // Represents position A dp[1][0] = 0; // Represents position B dp[2][0] = 0; // Represents position C dp[3][0] = 0; // Filling the table for (let i = 1; i <= n; i++) { // The number of ways to reach // a particular position (say X) // at the i'th step is equivalent // to the sum of the number // of ways the person is not at // position X in the last step. let countPositionO = dp[1][i - 1] + dp[2][i - 1] + dp[3][i - 1]; let countPositionA = dp[0][i - 1] + dp[2][i - 1] + dp[3][i - 1]; let countPositionB = dp[0][i - 1] + dp[1][i - 1] + dp[3][i - 1]; let countPositionC = dp[0][i - 1] + dp[1][i - 1] + dp[2][i - 1]; dp[0][i] = countPositionO; dp[1][i] = countPositionA; dp[2][i] = countPositionB; dp[3][i] = countPositionC; } return dp[0][n]; } // Driver code let n = 3; document.write(count(n) + "<br>" ); n = 4; document.write(count(n) + "<br>" ); // This code is contributed by avanitrachhadiya2155 </script> |
6 21
Time Complexity: O(N).
Auxiliary Space Complexity: O(1)
Note:
- This program works more efficiently to find the number of ways in constant time after preprocessing for multiple queries if we fill the table for the largest number among the set of queries..
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!