Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of ways to choose N people containing at least 4 boys...

Count of ways to choose N people containing at least 4 boys and 1 girl from P boys and Q girls

Given integers N, P, and Q the task is to find the number of ways to form a group of N people having at least 4 boys and 1 girls from P boys and Q girls.

Examples:

Input:  P = 5, Q = 2, N = 5
Output: 10
Explanation:  Suppose given pool is {m1, m2, m3, m4, m5} and {w1, w2}. Then possible combinations are: 

m1 m2 m3 m4 w1
m2 m3 m4 m5 w1
m1 m3 m4 m5 w1
m1 m2 m4 m5 w1
m1 m2 m3 m5 w1
m1 m2 m3 m4 w2
m2 m3 m4 m5 w2
m1 m3 m4 m5 w2
m1 m2 m4 m5 w2
m1 m2 m3 m5 w2

Hence the count is 10.

Input:  P = 5, Q = 2, N = 6
Output: 7

 

Approach: This problem is based on combinatorics where we need to select at least 4 boys out of 1 boys available, and at least Y girls out of Q girls available, so that total people selected are N.
Consider the example:

 P = 5, Q = 2, N = 6 
In this, the possible selections are:
(4 boys out of 5) * (2 girls out of 2) + (5 boys out of 5) * (1 girl out of 2)
= 5C4 * 2C2 + 5C5 * 2C1

So for some general values of P, Q and N, the approach can be visualised as:

_{4}^{P}\textrm{C} \ast _{N-4}^{Q}\textrm{C} + _{5}^{P}\textrm{C} \ast _{N-5}^{Q}\textrm{C} + . . . + _{N-2}^{P}\textrm{C} \ast _{2}^{Q}\textrm{C} + _{N-1}^{P}\textrm{C} \ast _{1}^{Q}\textrm{C}                
where  
_{r}^{n}\textrm{C} = \frac{n!}{r!*(n-r)!}

Follow the steps mentioned below to implementation it:

  • Start iterating a loop from i = 4 till i = P.
  • At each iteration calculate the number of possible ways if we choose i boys and (N-i) girls, using combination
     _{i}^{P}\textrm{C} \ast _{N-i}^{Q}\textrm{C}
  • Add the possible value for each iteration as the total number of ways.
  • Return the total calculated ways at the end.

Below is the implementation of the approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate factorial
long long int fact(int f)
{
    f++;
    long long int ans = 1;
 
    // Loop to calculate factorial of f
    while (--f > 0)
        ans = ans * f;
    return ans;
}
 
// Function to calculate combination nCr
long long int ncr(int n, int r)
{
    return (fact(n) / (fact(r) * fact(n - r)));
}
 
// Function to calculate the number of ways
long long int countWays(int n, int p, int q)
{
    long long int sum = 0;
 
    // Loop to calculate the number of ways
    for (long long int i = 4; i <= p; i++) {
        if (n - i >= 1 && n - i <= q)
            sum += (ncr(p, i) * ncr(q, n - i));
    }
    return sum;
}
 
// Driver code
int main()
{
    int P = 5, Q = 2, N = 5;
    cout << countWays(N, P, Q) << endl;
    return 0;
}


Java




import java.util.*;
 
class GFG{
 
// Function to calculate factorial
static int fact(int f)
{
    f++;
    int ans = 1;
 
    // Loop to calculate factorial of f
    while (--f > 0)
        ans = ans * f;
    return ans;
}
 
// Function to calculate combination nCr
static int ncr(int n, int r)
{
    return (fact(n) / (fact(r) * fact(n - r)));
}
 
// Function to calculate the number of ways
static int countWays(int n, int p, int q)
{
    int sum = 0;
 
    // Loop to calculate the number of ways
    for (int i = 4; i <= p; i++) {
        if (n - i >= 1 && n - i <= q)
            sum += (ncr(p, i) * ncr(q, n - i));
    }
    return sum;
}
 
// Driver code
public static void main(String[] args)
{
    int P = 5, Q = 2, N = 5;
    System.out.print(countWays(N, P, Q) +"\n");
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Function to calculate factorial
def fact(f):
    ans = 1
 
    # Loop to calculate factorial of f
    while (f):
        ans = ans * f
        f -= 1
    return ans
 
# Function to calculate combination nCr
def ncr(n, r):
    return (fact(n) / (fact(r) * fact(n - r)))
 
# Function to calculate the number of ways
def countWays(n, p, q):
    sum = 0
 
    # Loop to calculate the number of ways
    for i in range(4, p + 1):
        if (n - i >= 1 and n - i <= q):
            sum += (ncr(p, i) * ncr(q, n - i))
 
    return (int)(sum)
 
# Driver code
P = 5
Q = 2
N = 5
print(countWays(N, P, Q))
 
 # This code is contributed by gfgking.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG {
 
// Function to calculate factorial
static int fact(int f)
{
    f++;
    int ans = 1;
 
    // Loop to calculate factorial of f
    while (--f > 0)
        ans = ans * f;
    return ans;
}
 
// Function to calculate combination nCr
static int ncr(int n, int r)
{
    return (fact(n) / (fact(r) * fact(n - r)));
}
 
// Function to calculate the number of ways
static int countWays(int n, int p, int q)
{
    int sum = 0;
 
    // Loop to calculate the number of ways
    for (int i = 4; i <= p; i++) {
        if (n - i >= 1 && n - i <= q)
            sum += (ncr(p, i) * ncr(q, n - i));
    }
    return sum;
}
 
    // Driver Code
    public static void Main()
    {
        int P = 5, Q = 2, N = 5;
        Console.Write(countWays(N, P, Q));
    }
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
 
    // Function to calculate factorial
    const fact = (f) => {
        f++;
        let ans = 1;
 
        // Loop to calculate factorial of f
        while (--f > 0)
            ans = ans * f;
        return ans;
    }
 
    // Function to calculate combination nCr
    const ncr = (n, r) => {
        return (fact(n) / (fact(r) * fact(n - r)));
    }
 
    // Function to calculate the number of ways
    const countWays = (n, p, q) => {
        let sum = 0;
 
        // Loop to calculate the number of ways
        for (let i = 4; i <= p; i++) {
            if (n - i >= 1 && n - i <= q)
                sum += (ncr(p, i) * ncr(q, n - i));
        }
        return sum;
    }
 
    // Driver code
 
    let P = 5, Q = 2, N = 5;
    document.write(countWays(N, P, Q));
 
    // This code is contributed by rakeshsahni
 
</script>


Output

10

Time Complexity: O(N2)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
02 Feb, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments