Sunday, October 12, 2025
HomeData Modelling & AICount of triples (A, B, C) where A*C is greater than B*B

Count of triples (A, B, C) where A*C is greater than B*B

Given three integers A, B and C. The task is to count the number of triples (a, b, c) such that a * c > b2, where 0 < a <= A, 0 < b <= B and 0 < c <= C.
Examples: 
 

Input: A = 3, B = 2, C = 2 
Output:
Following triples are counted : 
(1, 1, 2), (2, 1, 1), (2, 1, 2), (3, 1, 1), (3, 1, 2) and (3, 2, 2).
Input: A = 3, B = 3, C = 3 
Output: 11 
 

Naive approach: 
The brute force approach is to consider all possible triples (a, b, c) and count those triples that satisfy the constraint a*c > b2
Below is the implementation of the given approach. 
 

C++




// C++ implementation
#include <bits/stdc++.h>
using namespace std;
 
// function to return the count
// of the valid triplets
long long countTriplets(int A, int B, int C)
{
    long long ans = 0;
    for (int i = 1; i <= A; i++) {
        for (int j = 1; j <= B; j++) {
            for (int k = 1; k <= C; k++) {
                if (i * k > j * j)
                    ans++;
            }
        }
    }
    return ans;
}
 
// Driver Code
int main()
{
    int A, B, C;
    A = 3, B = 2, C = 2;
 
    // function calling
    cout << countTriplets(A, B, C);
}


Java




// Java implementation of above approach
import java.util.*;
 
class GFG
{
 
// function to return the count
// of the valid triplets
static long countTriplets(int A, int B, int C)
{
    long ans = 0;
    for (int i = 1; i <= A; i++)
    {
        for (int j = 1; j <= B; j++)
        {
            for (int k = 1; k <= C; k++)
            {
                if (i * k > j * j)
                    ans++;
            }
        }
    }
    return ans;
}
 
// Driver Code
public static void main (String[] args)
{
    int A = 3, B = 2, C = 2;
 
    // function calling
    System.out.println(countTriplets(A, B, C));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation for above approach
 
# function to return the count
# of the valid triplets
def countTriplets(A, B, C):
    ans = 0
    for i in range(1, A + 1):
        for j in range(1, B + 1):
            for k in range(1, C + 1):
                if (i * k > j * j):
                    ans += 1
 
    return ans
 
# Driver Code
A = 3
B = 2
C = 2
 
# function calling
print(countTriplets(A, B, C))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of above approach
using System;
 
class GFG
{
 
// function to return the count
// of the valid triplets
static long countTriplets(int A,
                          int B, int C)
{
    long ans = 0;
    for (int i = 1; i <= A; i++)
    {
        for (int j = 1; j <= B; j++)
        {
            for (int k = 1; k <= C; k++)
            {
                if (i * k > j * j)
                    ans++;
            }
        }
    }
    return ans;
}
 
// Driver Code
public static void Main (String[] args)
{
    int A = 3, B = 2, C = 2;
 
    // function calling
    Console.WriteLine(countTriplets(A, B, C));
}
}
     
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation
 
// function to return the count
// of the valid triplets
function countTriplets(A, B, C)
{
    let ans = 0;
    for (let i = 1; i <= A; i++) {
        for (let j = 1; j <= B; j++) {
            for (let k = 1; k <= C; k++) {
                if (i * k > j * j)
                    ans++;
            }
        }
    }
    return ans;
}
 
// Driver Code
    let A, B, C;
    A = 3, B = 2, C = 2;
 
    // function calling
    document.write(countTriplets(A, B, C));
 
</script>


Output: 

6

 

Time Complexity: O(A*B*C)          since three nested loops are used the time taken by the algorithm to complete all operations is O(A*B*C).
 

Auxiliary Space: O(1), since no extra array is used so the space taken by the algorithm is constant
 

Efficient approach: 
Let us count all triplets for a given value of b = k for all k from 1 to B
 

  1. For a given b = k we need to find all a = i and c = j that satisfy i * j > k2
  2. For a = i, find smallest c = j that satisfies the condition.
    Since c = j satisfies this condition therefore c = j + 1, c = j + 2, … and so on, will also satisfy the condition. 
    So we can easily count all triples in which a = i and b = k.
  3. Also if for some a = i, c = j is the smallest value such that the given condition is satisfied so it can be observed that a = j and all c >= i also satisfy the condition. 
    The condition is also satisfied by a = j + 1 and c >= i that is all values a >= j and c >= i also satisfy the condition.
  4. The above observation helps us to count all triples in which b = k and a >= j easily.
  5. Now we need to count all triples in which b = k and i < a < j.
  6. Thus for a given value of b = k we only need to go upto a = square root of k.

Below is the implementation of the above approach:
 

C++




// C++ implementation
#include <bits/stdc++.h>
using namespace std;
 
// Counts the number of triplets
// for a given value of b
long long getCount(int A, int B2,
                   int C)
{
    long long count = 0;
 
    // Count all triples in which a = i
    for (int i = 1; i <= A; i++) {
 
        // Smallest value j
        // such that i*j > B2
        long long j = (B2 / i) + 1;
 
        // Count all (i, B2, x)
        // such that x >= j
        if (C >= j)
            count = (count + C - j + 1);
 
        // count all (x, B2, y) such
        // that x >= j this counts
        // all such triples in
        // which a >= j
        if (A >= j && C >= i)
            count = (count
                     + (C - i + 1)
                           * (A - j + 1));
 
        // As all triples with a >= j
        // have been counted reduce
        // A to j - 1.
        if (A >= j)
            A = j - 1;
    }
    return count;
}
 
// Counts the number of triples that
// satisfy the given constraints
long long countTriplets(int A, int B,
                        int C)
{
    long long ans = 0;
    for (int i = 1; i <= B; i++) {
 
        // GetCount of triples in which b = i
        ans = (ans
               + getCount(A, i * i, C));
    }
    return ans;
}
 
// Driver Code
int main()
{
    int A, B, C;
    A = 3, B = 2, C = 2;
 
    // Function calling
    cout << countTriplets(A, B, C);
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Counts the number of triplets
// for a given value of b
static long getCount(int A, int B2, int C)
{
    long count = 0;
 
    // Count all triples in which a = i
    for (int i = 1; i <= A; i++)
    {
 
        // Smallest value j
        // such that i*j > B2
        long j = (B2 / i) + 1;
 
        // Count all (i, B2, x)
        // such that x >= j
        if (C >= j)
            count = (count + C - j + 1);
 
        // count all (x, B2, y) such
        // that x >= j this counts
        // all such triples in
        // which a >= j
        if (A >= j && C >= i)
            count = (count + (C - i + 1) *
                             (A - j + 1));
 
        // As all triples with a >= j
        // have been counted reduce
        // A to j - 1.
        if (A >= j)
            A = (int) (j - 1);
    }
    return count;
}
 
// Counts the number of triples that
// satisfy the given constraints
static long countTriplets(int A, int B, int C)
{
    long ans = 0;
    for (int i = 1; i <= B; i++)
    {
 
        // GetCount of triples in which b = i
        ans = (ans + getCount(A, i * i, C));
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int A, B, C;
    A = 3; B = 2; C = 2;
 
    // Function calling
    System.out.println(countTriplets(A, B, C));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 implementation
 
# Counts the number of triplets
# for a given value of b
def getCount(A, B2, C):
     
    count = 0
     
    # Count all triples in which a = i
    i=1
    while(i<A):
         
        # Smallest value j
        # such that i*j > B2
        j = (B2 // i) + 1
        # Count all (i, B2, x)
        # such that x >= j
        if (C >= j):
            count = count + C - j + 1
             
        # count all (x, B2, y) such
        # that x >= j this counts
        # all such triples in
        # which a >= j
        if (A>= j and C >= i):
            count = count+ (C - i + 1)    * (A - j + 1)
             
        # As all triples with a >= j
        # have been counted reduce
        # A to j - 1.
        if (A >= j):
            A = j - 1
        i+=1
     
    return count
 
 
# Counts the number of triples that
# satisfy the given constraints
def countTriplets(A, B, C):
     
    ans = 0
    for i in range(1,B+1):
        # GetCount of triples in which b = i
        ans = (ans+ getCount(A, i * i, C))
     
    return ans
 
 
# Driver Code
 
A = 3
B = 2
C = 2
 
# Function calling
print(countTriplets(A, B, C))
 
# This code is contributed by shubhamsingh10


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;                
     
class GFG
{
 
// Counts the number of triplets
// for a given value of b
static long getCount(int A, int B2, int C)
{
    long count = 0;
 
    // Count all triples in which a = i
    for (int i = 1; i <= A; i++)
    {
 
        // Smallest value j
        // such that i*j > B2
        long j = (B2 / i) + 1;
 
        // Count all (i, B2, x)
        // such that x >= j
        if (C >= j)
            count = (count + C - j + 1);
 
        // count all (x, B2, y) such
        // that x >= j this counts
        // all such triples in
        // which a >= j
        if (A >= j && C >= i)
            count = (count + (C - i + 1) *
                             (A - j + 1));
 
        // As all triples with a >= j
        // have been counted reduce
        // A to j - 1.
        if (A >= j)
            A = (int) (j - 1);
    }
    return count;
}
 
// Counts the number of triples that
// satisfy the given constraints
static long countTriplets(int A, int B, int C)
{
    long ans = 0;
    for (int i = 1; i <= B; i++)
    {
 
        // GetCount of triples in which b = i
        ans = (ans + getCount(A, i * i, C));
    }
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int A, B, C;
    A = 3; B = 2; C = 2;
 
    // Function calling
    Console.WriteLine(countTriplets(A, B, C));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript implementation
 
// Counts the number of triplets
// for a given value of b
function getCount(A, B2, C)
{
    let count = 0;
 
    // Count all triples in which a = i
    for (let i = 1; i <= A; i++) {
 
        // Smallest value j
        // such that i*j > B2
        let j = parseInt(B2 / i) + 1;
 
        // Count all (i, B2, x)
        // such that x >= j
        if (C >= j)
            count = (count + C - j + 1);
 
        // count all (x, B2, y) such
        // that x >= j this counts
        // all such triples in
        // which a >= j
        if (A >= j && C >= i)
            count = (count
                     + (C - i + 1)
                           * (A - j + 1));
 
        // As all triples with a >= j
        // have been counted reduce
        // A to j - 1.
        if (A >= j)
            A = j - 1;
    }
    return count;
}
 
// Counts the number of triples that
// satisfy the given constraints
function countTriplets(A, B, )
{
    let ans = 0;
    for (let i = 1; i <= B; i++) {
 
        // GetCount of triples in which b = i
        ans = (ans
               + getCount(A, i * i, C));
    }
    return ans;
}
 
// Driver Code
    let A, B, C;
    A = 3, B = 2, C = 2;
 
    // Function calling
    document.write(countTriplets(A, B, C));
 
</script>


Output: 

6

 

Time Complexity: O(A*B), since two nested loops are used the time taken by the algorithm to complete all operations is O(A*B).
 Auxiliary Space: O(1), since no extra array is used so the space taken by the algorithm is constant

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32353 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6721 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11943 POSTS0 COMMENTS
Shaida Kate Naidoo
6841 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6797 POSTS0 COMMENTS
Umr Jansen
6798 POSTS0 COMMENTS