Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of Substrings having Sum equal to their Length

Count of Substrings having Sum equal to their Length

Given a numeric string str, the task is to calculate the number of substrings with the sum of digits equal to their length.

Examples:

Input: str = “112112” 
Output:
Explanation: 
Substrings “1”, “1”, “11”, “1”, “1”, “11” satisfy the given condition.

Input: str = “1101112” 
Output: 12

Naive Approach: The simplest solution is to generate all substrings of the given string and for each substring, check if its sum is equal to its length or not. For each substring found to be true, increase count. 

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of
// substrings with sum equal to length
int countSubstrings(string s, int n)
{
 
    int count = 0;
 
    for (int i = 0; i < n; i++) {
        int sum = 0;
        for (int j = i; j < n; j++) {
            sum += s[j] - '0';
 
            if (j - i + 1 == sum) {
                count++;
            }
        }
    }
 
    // Return count
    return count;
}
 
// Driver Code
int main()
{
    string str = "1101112";
    int n = str.length();
    cout << countSubstrings(str, n) << endl;
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG {
 
    // Function to count the number of
    // substrings with sum equal to length
    static int countSubStrings(String s, int n)
    {
 
        int count = 0;
 
        for (int i = 0; i < n; i++) {
            int sum = 0;
            for (int j = i; j < n; j++) {
                sum += s.charAt(j) - '0';
 
                if (j - i + 1 == sum) {
                    count++;
                }
            }
        }
 
        // Return count
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String str = "1101112";
        int n = str.length();
 
        System.out.print(countSubStrings(str, n) + "\n");
    }
}


Python3




def countSubstrings(s: str, n: int):
    count = 0
    for i in range(n):
        sum = 0
        for j in range(i, n):
            sum += int(s[j])
            if (j - i + 1 == sum):
                count += 1
    return count
 
 
str = "1101112"
n = len(str)
print(countSubstrings(str, n))


C#




using System;
 
public class Program {
    // Function to count the number of
    // substrings with sum equal to length
    static int CountSubStrings(string s, int n)
    {
        int count = 0;
 
        for (int i = 0; i < n; i++) {
            int sum = 0;
            for (int j = i; j < n; j++) {
                sum += s[j] - '0';
 
                if (j - i + 1 == sum) {
                    count++;
                }
            }
        }
 
        // Return count
        return count;
    }
 
    static void Main(string[] args)
    {
        string str = "1101112";
        int n = str.Length;
 
        Console.WriteLine(CountSubStrings(str, n));
    }
}


Javascript




// Javascript Program to implement
// the above approach
 
// Function to count the number of
// substrings with sum equal to length
function countSubstrings( s,  n)
{
 
    let count = 0;
 
    for (let i = 0; i < n; i++) {
        let sum = 0;
        for (let j = i; j < n; j++) {
            sum += s[j] - '0';
 
            if (j - i + 1 == sum) {
                count++;
            }
        }
    }
 
    // Return count
    return count;
}
 
// Driver Code
let str = "1101112";
let n = str.length;
console.log(countSubstrings(str, n));
 
 // This code is contributed by agrawalpoojaa976.


Output

12

Time Complexity: O(N2
Auxiliary Space: O(1)

Efficient Approach: We can see that we want the sum of any substring of the string to be equal to its length. Let’s say we already have a prefix array pref calculated such that pref[i] denotes the sum of all the elements from index 0 to index i. Now, we can visualise the question in terms of below given equations:

pref[r] – pref[l-1] = r – l + 1

// taking similar terms together

pref[r] – r = pref[l-1] – l + 1

pref[r] – r = pref[l-1] – (l – 1)

// say i = l – 1

pref[r] – r = pref[i] – i

Now for each index i we just need to check how many times the value of pref[i] – i occured previously. This can be easily solved using a Hashmap and maintaining a sum variable which gives the sum of all elements till index i. 

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of
// substrings with sum equal to length
int countSubstrings(string s, int n)
{
 
    int count = 0, sum = 0;
 
    // Stores the count of substrings
    unordered_map<int, int> mp;
    mp[0]++;
 
    for (int i = 0; i < n; ++i) {
 
        // Add character to sum
        sum += (s[i] - '0');
 
        // Add count of substrings to result
        count += mp[sum - (i + 1)];
 
        // Increase count of subarrays
        ++mp[sum - (i + 1)];
    }
 
    // Return count
    return count;
}
 
// Driver Code
int main()
{
    string str = "112112";
    int n = str.length();
    cout << countSubstrings(str, n) << endl;
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Function to count the number of
// subStrings with sum equal to length
static int countSubStrings(String s, int n)
{
    int count = 0, sum = 0;
 
    // Stores the count of subStrings
    HashMap<Integer,
            Integer> mp = new HashMap<Integer,
                                      Integer>();
    mp.put(0, 1);
 
    for(int i = 0; i < n; ++i)
    {
         
        // Add character to sum
        sum += (s.charAt(i)- '0');
 
        // Add count of subStrings to result
        count += mp.containsKey(sum - (i + 1)) == true ?
                         mp.get(sum - (i + 1)) : 0;
 
        // Increase count of subarrays
        if(!mp.containsKey(sum - (i + 1)))
                    mp.put(sum - (i + 1), 1);
        else
            mp.put(sum - (i + 1),
            mp.get(sum - (i + 1)) + 1);
    }
 
    // Return count
    return count;
}
 
// Driver Code
public static void main(String[] args)
{
    String str = "112112";
    int n = str.length();
     
    System.out.print(countSubStrings(str, n) + "\n");
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program to implement
# the above approach
from collections import defaultdict
 
# Function to count the number of
# substrings with sum equal to length
def countSubstrings(s, n):
     
    count, sum = 0, 0
     
    # Stores the count of substrings
    mp = defaultdict(lambda : 0)
    mp[0] += 1
     
    for i in range(n):
         
        # Add character to sum
        sum += ord(s[i]) - ord('0')
         
        # Add count of substrings to result
        count += mp[sum - (i + 1)]
         
        # Increase count of subarrays
        mp[sum - (i + 1)] += 1
         
    # Return count
    return count
 
# Driver code
str = '112112'
n = len(str)
 
print(countSubstrings(str, n))
 
# This code is contributed by Stuti Pathak


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Function to count the number of
// subStrings with sum equal to length
static int countSubStrings(String s, int n)
{
    int count = 0, sum = 0;
 
    // Stores the count of subStrings
    Dictionary<int,
               int> mp = new Dictionary<int,
                                        int>();
    mp.Add(0, 1);
 
    for(int i = 0; i < n; ++i)
    {
         
        // Add character to sum
        sum += (s[i]- '0');
 
        // Add count of subStrings to result
        count += mp.ContainsKey(sum - (i + 1)) == true ?
                             mp[sum - (i + 1)] : 0;
 
        // Increase count of subarrays
        if(!mp.ContainsKey(sum - (i + 1)))
                    mp.Add(sum - (i + 1), 1);
        else
            mp[sum - (i + 1)] = mp[sum - (i + 1)] + 1;
    }
 
    // Return count
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    String str = "112112";
    int n = str.Length;
     
    Console.Write(countSubStrings(str, n) + "\n");
}
}
 
// This code is contributed by Rohit_ranjan


Javascript




<script>
 
// Javascript Program to implement
// the above approach
 
// Function to count the number of
// substrings with sum equal to length
function countSubstrings(s, n)
{
 
    var count = 0, sum = 0;
 
    // Stores the count of substrings
    var mp = new Map();
 
    if(mp.has(0))
        mp.set(0, mp.get(0)+1)
    else
        mp.set(0, 1);
 
    for (var i = 0; i < n; ++i) {
 
        // Add character to sum
        sum += (s[i].charCodeAt(0) - '0'.charCodeAt(0));
 
        // Add count of substrings to result
        if(mp.has(sum - (i + 1)))
            count += mp.get(sum - (i + 1));
 
        // Increase count of subarrays
        if(mp.has(sum - (i + 1)))
            mp.set(sum - (i + 1), mp.get(sum - (i + 1))+1)
        else
            mp.set(sum - (i + 1), 1)
    }
 
    // Return count
    return count;
}
 
// Driver Code
var str = "112112";
var n = str.length;
document.write( countSubstrings(str, n));
 
</script>


Output

6

Time Complexity: O(N) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments