Given an integer array arr[] and an integer K, the task is to find the number of non-empty subsets S such that min(S) + max(S) < K.
Examples:
Input: arr[] = {2, 4, 5, 7} K = 8
Output: 4
Explanation:
The possible subsets are {2}, {2, 4}, {2, 4, 5} and {2, 5}
Input:: arr[] = {2, 4, 2, 5, 7} K = 10
Output: 26
Approach
- Sort the input array first.
- Now use Two Pointer Technique to count the number of subsets.
- Let take two pointers left and right and set left = 0 and right = N-1.
if (arr[left] + arr[right] < K )
Increment the left pointer by 1 and add 2 j – i into answer, because the left and right values make up a potential end values of a subset. All the values from [i, j – 1] also make up end of subsets which will have the sum < K. So, we need to calculate all the possible subsets for left = i and right ? [i, j]. So, after summing up values 2 j – i + 1 + 2 j – i – 2 + … + 2 0 of the GP, we get 2 j – i .
if( arr[left] + arr[right] >= K )
Decrement the right pointer by 1.
- Repeat the below process until left <= right.
Below is the implementation of the above approach:
C++
// C++ program to print count // of subsets S such that // min(S) + max(S) < K #include <bits/stdc++.h> using namespace std; // Function that return the // count of subset such that // min(S) + max(S) < K int get_subset_count( int arr[], int K, int N) { // Sorting the array sort(arr, arr + N); int left, right; left = 0; right = N - 1; // ans stores total number of subsets int ans = 0; while (left <= right) { if (arr[left] + arr[right] < K) { // add all possible subsets // between i and j ans += 1 << (right - left); left++; } else { // Decrease the sum right--; } } return ans; } // Driver code int main() { int arr[] = { 2, 4, 5, 7 }; int K = 8; int N = sizeof (arr) / sizeof (arr[0]); cout << get_subset_count(arr, K, N); return 0; } |
Java
// Java program to print count // of subsets S such that // Math.min(S) + Math.max(S) < K import java.util.*; class GFG{ // Function that return the // count of subset such that // Math.min(S) + Math.max(S) < K static int get_subset_count( int arr[], int K, int N) { // Sorting the array Arrays.sort(arr); int left, right; left = 0 ; right = N - 1 ; // ans stores total number // of subsets int ans = 0 ; while (left <= right) { if (arr[left] + arr[right] < K) { // Add all possible subsets // between i and j ans += 1 << (right - left); left++; } else { // Decrease the sum right--; } } return ans; } // Driver code public static void main(String[] args) { int arr[] = { 2 , 4 , 5 , 7 }; int K = 8 ; int N = arr.length; System.out.print(get_subset_count(arr, K, N)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program to print # count of subsets S such # that min(S) + max(S) < K # Function that return the # count of subset such that # min(S) + max(S) < K def get_subset_count(arr, K, N): # Sorting the array arr.sort() left = 0 ; right = N - 1 ; # ans stores total number of subsets ans = 0 ; while (left < = right): if (arr[left] + arr[right] < K): # Add all possible subsets # between i and j ans + = 1 << (right - left); left + = 1 ; else : # Decrease the sum right - = 1 ; return ans; # Driver code arr = [ 2 , 4 , 5 , 7 ]; K = 8 ; print (get_subset_count(arr, K, 4 )) # This code is contributed by grand_master |
C#
// C# program to print count // of subsets S such that // Math.Min(S) + Math.Max(S) < K using System; class GFG{ // Function that return the // count of subset such that // Math.Min(S) + Math.Max(S) < K static int get_subset_count( int []arr, int K, int N) { // Sorting the array Array.Sort(arr); int left, right; left = 0; right = N - 1; // ans stores total number // of subsets int ans = 0; while (left <= right) { if (arr[left] + arr[right] < K) { // Add all possible subsets // between i and j ans += 1 << (right - left); left++; } else { // Decrease the sum right--; } } return ans; } // Driver code public static void Main(String[] args) { int []arr = { 2, 4, 5, 7 }; int K = 8; int N = arr.Length; Console.Write(get_subset_count(arr, K, N)); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // JavaScript program to print count // of subsets S such that // Math.min(S) + Math.max(S) < K // Function that return the // count of subset such that // Math.min(S) + Math.max(S) < K function get_subset_count(arr,K,N) { // Sorting the array (arr).sort( function (a,b){ return a-b;}); let left, right; left = 0; right = N - 1; // ans stores total number // of subsets let ans = 0; while (left <= right) { if (arr[left] + arr[right] < K) { // Add all possible subsets // between i and j ans += 1 << (right - left); left++; } else { // Decrease the sum right--; } } return ans; } // Driver code let arr=[ 2, 4, 5, 7]; let K = 8; let N = arr.length; document.write(get_subset_count(arr, K, N)); // This code is contributed by patel2127 </script> |
4
Time Complexity: O(N* log N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!