Given an array A[] consisting of integers [1, N], the task is to count the total number of subarrays of all possible lengths x (1 ? x ? N), consisting of a permutation of integers [1, x] from the given array.
Examples:
Input: A[] = {3, 1, 2, 5, 4} Output: 4
Explanation:
Subarrays forming a permutation are {1}, {1, 2}, {3, 1, 2} and {3, 1, 2, 5, 4}.
Input: A[] = {4, 5, 1, 3, 2, 6} Output: 4
Explanation:
Subarrays forming a permutation are {1}, {1, 3, 2}, {4, 5, 1, 3, 2} and {4, 5, 1, 3, 2, 6}.
Naive Approach:
Follow the steps below to solve the problem:
- The simplest approach to solve the problem is to generate all possible subarrays.
- For each subarray, check if it is a permutation of elements in the range [1, length of subarray].
- For every such subarray found, increase count. Finally, print the count.
Time Complexity: O(N3)
Auxiliary Space: O(1)
Efficient Approach:
To optimize the above approach, follow the steps below:
- For every element from i = [1, N], check the maximum and minimum index, at which the elements of the permutation [1, i] are present.
- If the difference between the maximum and minimum index is equal to i, then it means there is a valid contiguous permutation for i.
- For every such permutation, increase the count. Finally, print the count.
Below is the implementation of the above approach:
C++
// C++ Program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function returns the required count int PermuteTheArray( int A[], int n) { int arr[n]; // Store the indices of the // elements present in A[]. for ( int i = 0; i < n; i++) { arr[A[i] - 1] = i; } // Store the maximum and // minimum index of the // elements from 1 to i. int mini = n, maxi = 0; int count = 0; for ( int i = 0; i < n; i++) { // Update maxi and mini, to // store minimum and maximum // index for permutation // of elements from 1 to i+1 mini = min(mini, arr[i]); maxi = max(maxi, arr[i]); // If difference between maxi // and mini is equal to i if (maxi - mini == i) // Increase count count++; } // Return final count return count; } // Driver Code int main() { int A[] = { 4, 5, 1, 3, 2, 6 }; cout << PermuteTheArray(A, 6); return 0; } |
Java
// Java program to implement // the above approach class GFG{ // Function returns the required count static int PermuteTheArray( int A[], int n) { int []arr = new int [n]; // Store the indices of the // elements present in A[]. for ( int i = 0 ; i < n; i++) { arr[A[i] - 1 ] = i; } // Store the maximum and // minimum index of the // elements from 1 to i. int mini = n, maxi = 0 ; int count = 0 ; for ( int i = 0 ; i < n; i++) { // Update maxi and mini, to // store minimum and maximum // index for permutation // of elements from 1 to i+1 mini = Math.min(mini, arr[i]); maxi = Math.max(maxi, arr[i]); // If difference between maxi // and mini is equal to i if (maxi - mini == i) // Increase count count++; } // Return final count return count; } // Driver Code public static void main(String[] args) { int A[] = { 4 , 5 , 1 , 3 , 2 , 6 }; System.out.print(PermuteTheArray(A, 6 )); } } // This code is contributed by gauravrajput1 |
Python3
# Python3 program to implement # the above approach # Function returns the required count def PermuteTheArray(A, n): arr = [ 0 ] * n # Store the indices of the # elements present in A[]. for i in range (n): arr[A[i] - 1 ] = i # Store the maximum and # minimum index of the # elements from 1 to i. mini = n maxi = 0 count = 0 for i in range (n): # Update maxi and mini, to # store minimum and maximum # index for permutation # of elements from 1 to i+1 mini = min (mini, arr[i]) maxi = max (maxi, arr[i]) # If difference between maxi # and mini is equal to i if (maxi - mini = = i): # Increase count count + = 1 # Return final count return count # Driver Code if __name__ = = "__main__" : A = [ 4 , 5 , 1 , 3 , 2 , 6 ] print (PermuteTheArray(A, 6 )) # This code is contributed by chitranayal |
C#
// C# program to implement // the above approach using System; using System.Collections.Generic; class GFG{ // Function returns the required count static int PermuteTheArray( int []A, int n) { int []arr = new int [n]; // Store the indices of the // elements present in []A. for ( int i = 0; i < n; i++) { arr[A[i] - 1] = i; } // Store the maximum and // minimum index of the // elements from 1 to i. int mini = n, maxi = 0; int count = 0; for ( int i = 0; i < n; i++) { // Update maxi and mini, to // store minimum and maximum // index for permutation // of elements from 1 to i+1 mini = Math.Min(mini, arr[i]); maxi = Math.Max(maxi, arr[i]); // If difference between maxi // and mini is equal to i if (maxi - mini == i) // Increase count count++; } // Return final count return count; } // Driver Code public static void Main(String[] args) { int []A = { 4, 5, 1, 3, 2, 6 }; Console.Write(PermuteTheArray(A, 6)); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript Program to implement // the above approach // Function returns the required count function PermuteTheArray(A, n) { var arr = Array(n); // Store the indices of the // elements present in A[]. for ( var i = 0; i < n; i++) { arr[A[i] - 1] = i; } // Store the maximum and // minimum index of the // elements from 1 to i. var mini = n, maxi = 0; var count = 0; for ( var i = 0; i < n; i++) { // Update maxi and mini, to // store minimum and maximum // index for permutation // of elements from 1 to i+1 mini = Math.min(mini, arr[i]); maxi = Math.max(maxi, arr[i]); // If difference between maxi // and mini is equal to i if (maxi - mini == i) // Increase count count++; } // Return final count return count; } // Driver Code var A = [4, 5, 1, 3, 2, 6]; document.write( PermuteTheArray(A, 6)); </script> |
4
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!