Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AICount of subarrays which forms a permutation from given Array elements

Count of subarrays which forms a permutation from given Array elements

Given an array A[] consisting of integers [1, N], the task is to count the total number of subarrays of all possible lengths x (1 ? x ? N), consisting of a permutation of integers [1, x] from the given array. 

Examples:  

Input: A[] = {3, 1, 2, 5, 4}  Output:
Explanation: 
Subarrays forming a permutation are {1}, {1, 2}, {3, 1, 2} and {3, 1, 2, 5, 4}.
 

Input: A[] = {4, 5, 1, 3, 2, 6} Output:
Explanation: 
Subarrays forming a permutation are {1}, {1, 3, 2}, {4, 5, 1, 3, 2} and {4, 5, 1, 3, 2, 6}.  

Naive Approach: 
Follow the steps below to solve the problem:  

  • The simplest approach to solve the problem is to generate all possible subarrays.
  • For each subarray, check if it is a permutation of elements in the range [1, length of subarray].
  • For every such subarray found, increase count. Finally, print the count.

Time Complexity: O(N3
Auxiliary Space: O(1)

Efficient Approach: 
To optimize the above approach, follow the steps below:  

  • For every element from i = [1, N], check the maximum and minimum index, at which the elements of the permutation [1, i] are present.
  • If the difference between the maximum and minimum index is equal to i, then it means there is a valid contiguous permutation for i.
  • For every such permutation, increase the count. Finally, print the count.

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function returns the required count
int PermuteTheArray(int A[], int n)
{
 
    int arr[n];
 
    // Store the indices of the
    // elements present in A[].
    for (int i = 0; i < n; i++) {
        arr[A[i] - 1] = i;
    }
 
    // Store the maximum and
    // minimum index of the
    // elements from 1 to i.
    int mini = n, maxi = 0;
    int count = 0;
 
    for (int i = 0; i < n; i++) {
 
        // Update maxi and mini, to
        // store minimum and maximum
        // index for permutation
        // of elements from 1 to i+1
        mini = min(mini, arr[i]);
        maxi = max(maxi, arr[i]);
 
        // If difference between maxi
        // and mini is equal to i
        if (maxi - mini == i)
 
            // Increase count
            count++;
    }
 
    // Return final count
    return count;
}
 
// Driver Code
int main()
{
 
    int A[] = { 4, 5, 1, 3, 2, 6 };
    cout << PermuteTheArray(A, 6);
 
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG{
 
// Function returns the required count
static int PermuteTheArray(int A[], int n)
{
    int []arr = new int[n];
 
    // Store the indices of the
    // elements present in A[].
    for(int i = 0; i < n; i++)
    {
        arr[A[i] - 1] = i;
    }
 
    // Store the maximum and
    // minimum index of the
    // elements from 1 to i.
    int mini = n, maxi = 0;
    int count = 0;
 
    for(int i = 0; i < n; i++)
    {
 
        // Update maxi and mini, to
        // store minimum and maximum
        // index for permutation
        // of elements from 1 to i+1
        mini = Math.min(mini, arr[i]);
        maxi = Math.max(maxi, arr[i]);
 
        // If difference between maxi
        // and mini is equal to i
        if (maxi - mini == i)
 
            // Increase count
            count++;
    }
 
    // Return final count
    return count;
}
 
// Driver Code
public static void main(String[] args)
{
    int A[] = { 4, 5, 1, 3, 2, 6 };
     
    System.out.print(PermuteTheArray(A, 6));
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program to implement
# the above approach
 
# Function returns the required count
def PermuteTheArray(A, n):
 
    arr = [0] * n
 
    # Store the indices of the
    # elements present in A[].
    for i in range(n):
        arr[A[i] - 1] = i
 
    # Store the maximum and
    # minimum index of the
    # elements from 1 to i.
    mini = n
    maxi = 0
    count = 0
 
    for i in range(n):
 
        # Update maxi and mini, to
        # store minimum and maximum
        # index for permutation
        # of elements from 1 to i+1
        mini = min(mini, arr[i])
        maxi = max(maxi, arr[i])
 
        # If difference between maxi
        # and mini is equal to i
        if (maxi - mini == i):
 
            # Increase count
            count += 1
 
    # Return final count
    return count
 
# Driver Code
if __name__ == "__main__":
 
    A = [ 4, 5, 1, 3, 2, 6 ]
     
    print(PermuteTheArray(A, 6))
 
# This code is contributed by chitranayal


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function returns the required count
static int PermuteTheArray(int []A, int n)
{
    int []arr = new int[n];
 
    // Store the indices of the
    // elements present in []A.
    for(int i = 0; i < n; i++)
    {
        arr[A[i] - 1] = i;
    }
 
    // Store the maximum and
    // minimum index of the
    // elements from 1 to i.
    int mini = n, maxi = 0;
    int count = 0;
 
    for(int i = 0; i < n; i++)
    {
 
        // Update maxi and mini, to
        // store minimum and maximum
        // index for permutation
        // of elements from 1 to i+1
        mini = Math.Min(mini, arr[i]);
        maxi = Math.Max(maxi, arr[i]);
 
        // If difference between maxi
        // and mini is equal to i
        if (maxi - mini == i)
 
            // Increase count
            count++;
    }
 
    // Return final count
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []A = { 4, 5, 1, 3, 2, 6 };
     
    Console.Write(PermuteTheArray(A, 6));
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
 
// Javascript Program to implement
// the above approach
 
// Function returns the required count
function PermuteTheArray(A, n)
{
 
    var arr = Array(n);
 
    // Store the indices of the
    // elements present in A[].
    for (var i = 0; i < n; i++) {
        arr[A[i] - 1] = i;
    }
 
    // Store the maximum and
    // minimum index of the
    // elements from 1 to i.
    var mini = n, maxi = 0;
    var count = 0;
 
    for (var i = 0; i < n; i++) {
 
        // Update maxi and mini, to
        // store minimum and maximum
        // index for permutation
        // of elements from 1 to i+1
        mini = Math.min(mini, arr[i]);
        maxi = Math.max(maxi, arr[i]);
 
        // If difference between maxi
        // and mini is equal to i
        if (maxi - mini == i)
 
            // Increase count
            count++;
    }
 
    // Return final count
    return count;
}
 
// Driver Code
var A = [4, 5, 1, 3, 2, 6];
document.write( PermuteTheArray(A, 6));
 
</script>


Output: 

4

Time Complexity: O(N) 
Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments