Given an array arr[] of N integers and a number K. The task is to count the number of subarray with exactly K Prime Numbers.
Example:
Input: arr[] = {1, 2, 3, 4}, K = 2
Output: 4
Explanation:
Since total number of prime number in the array are 2. So the 4 subarray with 2 prime number are:
1. {2, 3}
2. {1, 2, 3}
3. {2, 3, 4}
4. {1, 2, 3, 4}
Input: arr[] = {2, 4, 5}, K = 3
Output: 0
Explanation:
Since total number of prime number in the array are 2 which is less than K(K = 3).
So there is no such subarray with K primes.
Approach:
- Traverse the given array arr[] and check whether the element is prime or not.
- If the current element is prime then change the value of array that index to 1, Else change the value at that index to 0.
- Now the given array is converted into Binary Array.
- Find the count of subarray with sum equals to K in the above Binary Array using the approach discussed in this article.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // A utility function to check if // the number n is prime or not bool isPrime( int n) { int i; // Base Cases if (n <= 1) return false ; if (n <= 3) return true ; // Check to skip middle five // numbers in below loop if (n % 2 == 0 || n % 3 == 0) { return false ; } for (i = 5; i * i <= n; i += 6) { // If n is divisible by i & i+2 // then it is not prime if (n % i == 0 || n % (i + 2) == 0) { return false ; } } return true ; } // Function to find number of subarrays // with sum exactly equal to k int findSubarraySum( int arr[], int n, int K) { // STL map to store number of subarrays // starting from index zero having // particular value of sum. unordered_map< int , int > prevSum; int res = 0; // To store the sum of element traverse // so far int currsum = 0; for ( int i = 0; i < n; i++) { // Add current element to currsum currsum += arr[i]; // If currsum = K, then a new // subarray is found if (currsum == K) { res++; } // If currsum > K then find the // no. of subarrays with sum // currsum - K and exclude those // subarrays if (prevSum.find(currsum - K) != prevSum.end()) res += (prevSum[currsum - K]); // Add currsum to count of // different values of sum prevSum[currsum]++; } // Return the final result return res; } // Function to count the subarray with K primes void countSubarray( int arr[], int n, int K) { // Update the array element for ( int i = 0; i < n; i++) { // If current element is prime // then update the arr[i] to 1 if (isPrime(arr[i])) { arr[i] = 1; } // Else change arr[i] to 0 else { arr[i] = 0; } } // Function Call cout << findSubarraySum(arr, n, K); } // Driver Code int main() { int arr[] = { 1, 2, 3, 4 }; int K = 2; int N = sizeof (arr) / sizeof (arr[0]); // Function Call countSubarray(arr, N, K); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // A utility function to check if // the number n is prime or not static boolean isPrime( int n) { int i; // Base Cases if (n <= 1 ) return false ; if (n <= 3 ) return true ; // Check to skip middle five // numbers in below loop if (n % 2 == 0 || n % 3 == 0 ) { return false ; } for (i = 5 ; i * i <= n; i += 6 ) { // If n is divisible by i & i+2 // then it is not prime if (n % i == 0 || n % (i + 2 ) == 0 ) { return false ; } } return true ; } // Function to find number of subarrays // with sum exactly equal to k static int findSubarraySum( int arr[], int n, int K) { // STL map to store number of subarrays // starting from index zero having // particular value of sum. HashMap<Integer, Integer> prevSum = new HashMap<Integer, Integer>(); int res = 0 ; // To store the sum of element traverse // so far int currsum = 0 ; for ( int i = 0 ; i < n; i++) { // Add current element to currsum currsum += arr[i]; // If currsum = K, then a new // subarray is found if (currsum == K) { res++; } // If currsum > K then find the // no. of subarrays with sum // currsum - K and exclude those // subarrays if (prevSum.containsKey(currsum - K)) { res += (prevSum.get(currsum - K)); } // Add currsum to count of // different values of sum if (prevSum.containsKey(currsum)) prevSum.put(currsum, prevSum.get(currsum) + 1 ); else prevSum.put(currsum, 1 ); } // Return the final result return res; } // Function to count the subarray with K primes static void countSubarray( int arr[], int n, int K) { // Update the array element for ( int i = 0 ; i < n; i++) { // If current element is prime // then update the arr[i] to 1 if (isPrime(arr[i])) { arr[i] = 1 ; } // Else change arr[i] to 0 else { arr[i] = 0 ; } } // Function Call System.out.print(findSubarraySum(arr, n, K)); } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 4 }; int K = 2 ; int N = arr.length; // Function Call countSubarray(arr, N, K); } } // This code contributed by Rajput-Ji |
Python3
# Python3 program for the above approach from math import sqrt # A utility function to check if # the number n is prime or not def isPrime(n): # Base Cases if (n < = 1 ): return False if (n < = 3 ): return True # Check to skip middle five # numbers in below loop if (n % 2 = = 0 or n % 3 = = 0 ): return False for i in range ( 5 , int (sqrt(n)) + 1 , 6 ): # If n is divisible by i & i+2 # then it is not prime if (n % i = = 0 or n % (i + 2 ) = = 0 ): return False return True # Function to find number of subarrays # with sum exactly equal to k def findSubarraySum(arr,n,K): # STL map to store number of subarrays # starting from index zero having # particular value of sum. prevSum = {i: 0 for i in range ( 100 )} res = 0 # To store the sum of element traverse # so far currsum = 0 for i in range (n): # Add current element to currsum currsum + = arr[i] # If currsum = K, then a new # subarray is found if (currsum = = K): res + = 1 # If currsum > K then find the # no. of subarrays with sum # currsum - K and exclude those # subarrays if (currsum - K) in prevSum: res + = (prevSum[currsum - K]) # Add currsum to count of # different values of sum prevSum[currsum] + = 1 # Return the final result return res # Function to count the subarray with K primes def countSubarray(arr,n,K): # Update the array element for i in range (n): # If current element is prime # then update the arr[i] to 1 if (isPrime(arr[i])): arr[i] = 1 # Else change arr[i] to 0 else : arr[i] = 0 # Function Call print (findSubarraySum(arr, n, K)) # Driver Code if __name__ = = '__main__' : arr = [ 1 , 2 , 3 , 4 ] K = 2 N = len (arr) # Function Call countSubarray(arr, N, K) # This code is contributed by Surendra_Gangwar |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // A utility function to check if // the number n is prime or not static bool isPrime( int n) { int i; // Base Cases if (n <= 1) return false ; if (n <= 3) return true ; // Check to skip middle five // numbers in below loop if (n % 2 == 0 || n % 3 == 0) { return false ; } for (i = 5; i * i <= n; i += 6) { // If n is divisible by i & i+2 // then it is not prime if (n % i == 0 || n % (i + 2) == 0) { return false ; } } return true ; } // Function to find number of subarrays // with sum exactly equal to k static int findSubarraySum( int []arr, int n, int K) { // STL map to store number of subarrays // starting from index zero having // particular value of sum. Dictionary< int , int > prevSum = new Dictionary< int , int >(); int res = 0; // To store the sum of element traverse // so far int currsum = 0; for ( int i = 0; i < n; i++) { // Add current element to currsum currsum += arr[i]; // If currsum = K, then a new // subarray is found if (currsum == K) { res++; } // If currsum > K then find the // no. of subarrays with sum // currsum - K and exclude those // subarrays if (prevSum.ContainsKey(currsum - K)) { res += (prevSum[currsum - K]); } // Add currsum to count of // different values of sum if (prevSum.ContainsKey(currsum)) { prevSum[currsum] = prevSum[currsum] + 1; } else { prevSum.Add(currsum, 1); } } // Return the readonly result return res; } // Function to count the subarray with K primes static void countSubarray( int []arr, int n, int K) { // Update the array element for ( int i = 0; i < n; i++) { // If current element is prime // then update the arr[i] to 1 if (isPrime(arr[i])) { arr[i] = 1; } // Else change arr[i] to 0 else { arr[i] = 0; } } // Function Call Console.Write(findSubarraySum(arr, n, K)); } // Driver Code public static void Main(String[] args) { int []arr = { 1, 2, 3, 4 }; int K = 2; int N = arr.Length; // Function Call countSubarray(arr, N, K); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript program for the above approach // A utility function to check if // the number n is prime or not function isPrime(n) { let i; // Base Cases if (n <= 1) return false ; if (n <= 3) return true ; // Check to skip middle five // numbers in below loop if (n % 2 == 0 || n % 3 == 0) { return false ; } for (i = 5; i * i <= n; i += 6) { // If n is divisible by i & i+2 // then it is not prime if (n % i == 0 || n % (i + 2) == 0) { return false ; } } return true ; } // Function to find number of subarrays // with sum exactly equal to k function findSubarraySum(arr, n, K) { // STL map to store number of subarrays // starting from index zero having // particular value of sum. let prevSum = new Map(); let res = 0; // To store the sum of element traverse // so far let currsum = 0; for (let i = 0; i < n; i++) { // Add current element to currsum currsum += arr[i]; // If currsum = K, then a new // subarray is found if (currsum == K) { res++; } // If currsum > K then find the // no. of subarrays with sum // currsum - K and exclude those // subarrays if (prevSum.has(currsum - K)) res += (prevSum.get(currsum - K)); // Add currsum to count of // different values of sum if (prevSum.has(currsum)){ prevSum.set(currsum, prevSum.get(currsum) + 1) } else { prevSum.set(currsum, 1) } } // Return the final result return res; } // Function to count the subarray with K primes function countSubarray(arr, n, K) { // Update the array element for (let i = 0; i < n; i++) { // If current element is prime // then update the arr[i] to 1 if (isPrime(arr[i])) { arr[i] = 1; } // Else change arr[i] to 0 else { arr[i] = 0; } } // Function Call document.write(findSubarraySum(arr, n, K)); } // Driver Code let arr = [ 1, 2, 3, 4 ]; let K = 2; let N = arr.length; // Function Call countSubarray(arr, N, K); // This code is contributed by _saurabh_jaiswal </script> |
4
Time Complexity: O(N*log(log(N)))
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!