Monday, January 6, 2025
Google search engine
HomeData Modelling & AICount of sub-strings of length n possible from the given string

Count of sub-strings of length n possible from the given string

Given a string str and an integer N, the task is to find the number of possible sub-strings of length N.
Examples: 

Input: str = “neveropen”, n = 5 
Output:
All possible sub-strings of length 5 are “neveropen”, “eeksf”, “eksfo”, 
“ksfor”, “sforg”, “forge”, “orgee”, “rgeek” and “neveropen”.
Input: str = “jgec”, N = 2 
Output:

Method 1:Naive Approach

Approach:

The approach used in this code is to iterate over all possible starting positions of a substring of length N in the given string str, and count the number of valid substrings. We can check if a substring is valid by using the substr function to extract a substring of length N starting from the current position, and checking if its length is equal to N.

Implementation:

C++




#include <bits/stdc++.h>
using namespace std;
 
int count_substrings(string str, int n) {
    int count = 0;
    for (int i = 0; i <= str.length() - n; i++) {
        string substring = str.substr(i, n);
        // check if the current substring has length n
        if (substring.length() == n) {
            count++;
        }
    }
    return count;
}
 
int main() {
    string str = "neveropen";
    int n = 5;
    cout << count_substrings(str, n) << endl;
    return 0;
}


Java




public class CountSubstrings {
    public static int countSubstrings(String str, int n) {
        int count = 0;
        for (int i = 0; i <= str.length() - n; i++) {
            String substring = str.substring(i, i + n);
            // check if the current substring has length n
            if (substring.length() == n) {
                count++;
            }
        }
        return count;
    }
 
    public static void main(String[] args) {
        String str = "neveropen";
        int n = 5;
        System.out.println(countSubstrings(str, n));
    }
}


Python3




def count_substrings(string, n):
    count = 0
    for i in range(len(string) - n + 1):
        substring = string[i:i+n]
        # check if the current substring has length n
        if len(substring) == n:
            count += 1
    return count
 
str = "neveropen"
n = 5
print(count_substrings(str, n))


C#




using System;
 
class GFG
{
    // Function to count the number of substrings of length n in a given string.
    static int CountSubstrings(string str, int n)
    {
        int count = 0;
         
        // Loop through the string starting from index 0 and going up to length - n.
        for (int i = 0; i <= str.Length - n; i++)
        {
            // Get the substring of length n starting at index i.
            string substring = str.Substring(i, n);
             
            // Check if the current substring has length n.
            if (substring.Length == n)
            {
                count++;
            }
        }
         
        return count;
    }
 
    static void Main()
    {
        string str = "neveropen";
        int n = 5;
         
        // Call the function to count substrings and print the result.
        Console.WriteLine(CountSubstrings(str, n));
    }
}


Javascript




//Javascript Code
function count_substrings(str, n) {
    let count = 0;
    for (let i = 0; i <= str.length - n; i++) {
        let substring = str.substr(i, n);
        // check if the current substring has length n
        if (substring.length === n) {
            count++;
        }
    }
    return count;
}
 
//Driver's Code
let str = "neveropen";
let n = 5;
console.log(count_substrings(str, n));


Output

9







Time Complexity: O(M*N), where M is the length of the input string str, since we iterate over N possible starting positions and extract a substring of length N each time.
Auxiliary Space: O(1), no extra space is required.

Method 2:Efficient Approach

Approach: The count of sub-strings of length n will always be len – n + 1 where len is the length of the given string. For example, if str = “neveropen” and n = 5 then the count of sub-strings having length 5 will be “neveropen”, “eeksf”, “eksfo”, “ksfor”, “sforg”, “forge”, “orgee”, “rgeek” and “neveropen” which is len – n + 1 = 13 – 5 + 1 = 9.
Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// possible sub-strings of length n
int countSubStr(string str, int n)
{
    int len = str.length();
    return (len - n + 1);
}
 
// Driver code
int main()
{
    string str = "neveropen";
    int n = 5;
 
    cout << countSubStr(str, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to return the count of
// possible sub-strings of length n
static int countSubStr(String str, int n)
{
    int len = str.length();
    return (len - n + 1);
}
 
// Driver code
public static void main(String args[])
{
    String str = "neveropen";
    int n = 5;
 
    System.out.print(countSubStr(str, n));
}
}
 
// This code is contributed by mohit kumar 29


Python3




# Python3 implementation of the approach
 
# Function to return the count of
# possible sub-strings of length n
def countSubStr(string, n) :
 
    length = len(string);
    return (length - n + 1);
 
# Driver code
if __name__ == "__main__" :
 
    string = "neveropen";
    n = 5;
 
    print(countSubStr(string, n));
     
# This code is contributed by Ryuga


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the count of
// possible sub-strings of length n
static int countSubStr(string str, int n)
{
    int len = str.Length;
    return (len - n + 1);
}
 
// Driver code
public static void Main()
{
    string str = "neveropen";
    int n = 5;
 
    Console.WriteLine(countSubStr(str, n));
}
}
 
// This code is contributed by Code_Mech.


Javascript




<script>
  // JavaScript implementation of the approach
  // Function to return the count of
  // possible sub-strings of length n
  function countSubStr(str, n) {
    var len = str.length;
    return len - n + 1;
  }
 
  // Driver code
  var str = "neveropen";
  var n = 5;
 
  document.write(countSubStr(str, n));
</script>


PHP




<?php
// PHP implementation of the approach
 
// Function to return the count of
// possible sub-strings of length n
function countSubStr($str, $n)
{
    $len = strlen($str);
    return ($len - $n + 1);
}
 
// Driver code
$str = "neveropen";
$n = 5;
 
echo(countSubStr($str, $n));
 
// This code is contributed by Code_Mech.
?>


Output

9






Time Complexity: O(1), it is a constant.
Auxiliary Space: O(1), no extra space is required.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments