Monday, January 27, 2025
Google search engine
HomeLanguagesDynamic ProgrammingCount of strings that can be formed using a, b and c...

Count of strings that can be formed using a, b and c under given constraints

Given a length n, count the number of strings of length n that can be made using ‘a’, ‘b’ and ‘c’ with at most one ‘b’ and two ‘c’s allowed.

Examples : 

Input : n = 3 
Output : 19 
Below strings follow given constraints:
aaa aab aac aba abc aca acb acc baa
bac bca bcc caa cab cac cba cbc cca ccb 

Input  : n = 4
Output : 39

Asked in Google Interview

A simple solution is to recursively count all possible combinations of strings that can be made up to latter ‘a’, ‘b’, and ‘c’. 

Below is the implementation of the above idea 

C++




// C++ program to count number of strings
// of n characters with
#include<bits/stdc++.h>
using namespace std;
 
// n is total number of characters.
// bCount and cCount are counts of 'b'
// and 'c' respectively.
int countStr(int n, int bCount, int cCount)
{
    // Base cases
    if (bCount < 0 || cCount < 0) return 0;
    if (n == 0) return 1;
    if (bCount == 0 && cCount == 0) return 1;
 
    // Three cases, we choose, a or b or c
    // In all three cases n decreases by 1.
    int res = countStr(n-1, bCount, cCount);
    res += countStr(n-1, bCount-1, cCount);
    res += countStr(n-1, bCount, cCount-1);
 
    return res;
}
 
// Driver code
int main()
{
    int n = 3;  // Total number of characters
    cout << countStr(n, 1, 2);
    return 0;
}


Java




// Java program to count number
// of strings of n characters with
import java.io.*;
 
class GFG
{
     
// n is total number of characters.
// bCount and cCount are counts of 'b'
// and 'c' respectively.
static int countStr(int n,
                    int bCount,
                    int cCount)
{
    // Base cases
    if (bCount < 0 || cCount < 0) return 0;
    if (n == 0) return 1;
    if (bCount == 0 && cCount == 0) return 1;
 
    // Three cases, we choose, a or b or c
    // In all three cases n decreases by 1.
    int res = countStr(n - 1, bCount, cCount);
    res += countStr(n - 1, bCount - 1, cCount);
    res += countStr(n - 1, bCount, cCount - 1);
 
    return res;
}
 
// Driver code
public static void main (String[] args)
{
    int n = 3; // Total number of characters
    System.out.println(countStr(n, 1, 2));
}
}
 
// This code is contributed by akt_mit


Python 3




# Python 3 program to
# count number of strings
# of n characters with
 
# n is total number of characters.
# bCount and cCount are counts
# of 'b' and 'c' respectively.
def countStr(n, bCount, cCount):
 
    # Base cases
    if (bCount < 0 or cCount < 0):
        return 0
    if (n == 0) :
        return 1
    if (bCount == 0 and cCount == 0):
        return 1
 
    # Three cases, we choose, a or b or c
    # In all three cases n decreases by 1.
    res = countStr(n - 1, bCount, cCount)
    res += countStr(n - 1, bCount - 1, cCount)
    res += countStr(n - 1, bCount, cCount - 1)
 
    return res
 
# Driver code
if __name__ =="__main__":
    n = 3 # Total number of characters
    print(countStr(n, 1, 2))
 
# This code is contributed
# by ChitraNayal


C#




// C# program to count number
// of strings of n characters
// with a, b and c under given
// constraints
using System;
 
class GFG
{
     
// n is total number of
// characters. bCount and
// cCount are counts of
// 'b' and 'c' respectively.
static int countStr(int n,
                    int bCount,
                    int cCount)
{
    // Base cases
    if (bCount < 0 || cCount < 0)
        return 0;
    if (n == 0) return 1;
    if (bCount == 0 && cCount == 0)
        return 1;
 
    // Three cases, we choose,
    // a or b or c. In all three
    // cases n decreases by 1.
    int res = countStr(n - 1,
                       bCount, cCount);
    res += countStr(n - 1,
                    bCount - 1, cCount);
    res += countStr(n - 1,
                    bCount, cCount - 1);
 
    return res;
}
 
// Driver code
static public void Main ()
{
    // Total number
    // of characters
    int n = 3;
    Console.WriteLine(countStr(n, 1, 2));
}
}
 
// This code is contributed by aj_36


PHP




<?php
// PHP program to count number of
// strings of n characters with
 
// n is total number of characters.
// bCount and cCount are counts
// of 'b' and 'c' respectively.
function countStr($n, $bCount,
                      $cCount)
{
    // Base cases
    if ($bCount < 0 ||
        $cCount < 0)
        return 0;
    if ($n == 0)
    return 1;
    if ($bCount == 0 &&
        $cCount == 0)
        return 1;
 
    // Three cases, we choose,
    // a or b or c. In all three
    // cases n decreases by 1.
    $res = countStr($n - 1,
                    $bCount,
                    $cCount);
    $res += countStr($n - 1,
                     $bCount - 1,
                     $cCount);
    $res += countStr($n - 1,
                     $bCount,
                     $cCount - 1);
 
    return $res;
}
 
// Driver code
$n = 3; // Total number
        // of characters
echo countStr($n, 1, 2);
     
// This code is contributed by ajit
?>


Javascript




<script>
 
// JavaScript program for the above approach
   
// n is total number of characters.
// bCount and cCount are counts of 'b'
// and 'c' respectively.
function countStr(n, bCount, cCount)
{
 
    // Base cases
    if (bCount < 0 || cCount < 0) return 0;
    if (n == 0) return 1;
    if (bCount == 0 && cCount == 0) return 1;
   
    // Three cases, we choose, a or b or c
    // In all three cases n decreases by 1.
    let res = countStr(n - 1, bCount, cCount);
    res += countStr(n - 1, bCount - 1, cCount);
    res += countStr(n - 1, bCount, cCount - 1);
   
    return res;
}
 
// Driver Code
    let n = 3; // Total number of characters
    document.write(countStr(n, 1, 2));
         
        // This code is contributed by splevel62.
</script>


Output

19

Time Complexity: O(3^N).
Auxiliary Space: O(1).

Efficient Solution:

If we drown a recursion tree of the above code, we can notice that the same values appear multiple times. So we store results that are used later if repeated.

C++




// C++ program to count number of strings
// of n characters with
#include<bits/stdc++.h>
using namespace std;
 
// n is total number of characters.
// bCount and cCount are counts of 'b'
// and 'c' respectively.
int countStrUtil(int dp[][2][3], int n, int bCount=1,
                 int cCount=2)
{
    // Base cases
    if (bCount < 0 || cCount < 0) return 0;
    if (n == 0) return 1;
    if (bCount == 0 && cCount == 0) return 1;
 
    // if we had saw this combination previously
    if (dp[n][bCount][cCount] != -1)
        return dp[n][bCount][cCount];
 
    // Three cases, we choose, a or b or c
    // In all three cases n decreases by 1.
    int res = countStrUtil(dp, n-1, bCount, cCount);
    res += countStrUtil(dp, n-1, bCount-1, cCount);
    res += countStrUtil(dp, n-1, bCount, cCount-1);
 
    return (dp[n][bCount][cCount] = res);
}
 
// A wrapper over countStrUtil()
int countStr(int n)
{
    int dp[n+1][2][3];
    memset(dp, -1, sizeof(dp));
    return countStrUtil(dp, n);
}
 
// Driver code
int main()
{
    int n = 3; // Total number of characters
    cout << countStr(n);
    return 0;
}


Java




// Java program to count number of strings
// of n characters with
 
class GFG
{
    // n is total number of characters.
    // bCount and cCount are counts of 'b'
    // and 'c' respectively.
 
    static int countStrUtil(int[][][] dp, int n,
                            int bCount, int cCount)
    {
 
        // Base cases
        if (bCount < 0 || cCount < 0)
        {
            return 0;
        }
        if (n == 0)
        {
            return 1;
        }
        if (bCount == 0 && cCount == 0)
        {
            return 1;
        }
 
        // if we had saw this combination previously
        if (dp[n][bCount][cCount] != -1)
        {
            return dp[n][bCount][cCount];
        }
 
        // Three cases, we choose, a or b or c
        // In all three cases n decreases by 1.
        int res = countStrUtil(dp, n - 1, bCount, cCount);
        res += countStrUtil(dp, n - 1, bCount - 1, cCount);
        res += countStrUtil(dp, n - 1, bCount, cCount - 1);
 
        return (dp[n][bCount][cCount] = res);
    }
 
    // A wrapper over countStrUtil()
    static int countStr(int n, int bCount, int cCount)
    {
        int[][][] dp = new int[n + 1][2][3];
        for (int i = 0; i < n + 1; i++)
        {
            for (int j = 0; j < 2; j++)
            {
                for (int k = 0; k < 3; k++)
                {
                    dp[i][j][k] = -1;
                }
            }
        }
        return countStrUtil(dp, n,bCount,cCount);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 3; // Total number of characters
        int bCount = 1, cCount = 2;
        System.out.println(countStr(n,bCount,cCount));
    }
}
 
// This code has been contributed by 29AjayKumar


Python3




# Python 3 program to count number of strings
# of n characters with
 
# n is total number of characters.
# bCount and cCount are counts of 'b'
# and 'c' respectively.
def countStrUtil(dp, n, bCount=1,cCount=2):
 
    # Base cases
    if (bCount < 0 or cCount < 0):
        return 0
    if (n == 0):
        return 1
    if (bCount == 0 and cCount == 0):
        return 1
 
    # if we had saw this combination previously
    if (dp[n][bCount][cCount] != -1):
        return dp[n][bCount][cCount]
 
    # Three cases, we choose, a or b or c
    # In all three cases n decreases by 1.
    res = countStrUtil(dp, n-1, bCount, cCount)
    res += countStrUtil(dp, n-1, bCount-1, cCount)
    res += countStrUtil(dp, n-1, bCount, cCount-1)
 
    dp[n][bCount][cCount] = res
    return dp[n][bCount][cCount]
 
# A wrapper over countStrUtil()
def countStr(n):
 
    dp = [ [ [-1 for x in range(2+1)] for y in range(1+1)]for z in range(n+1)]
    return countStrUtil(dp, n)
 
# Driver code
if __name__ == "__main__":
     
    n = 3 # Total number of characters
    print(countStr(n))
     
# This code is contributed by chitranayal   


C#




// C# program to count number of strings
// of n characters with
using System;
 
class GFG
{
    // n is total number of characters.
    // bCount and cCount are counts of 'b'
    // and 'c' respectively.
    static int countStrUtil(int[,,] dp, int n,
                    int bCount=1, int cCount=2)
    {
        // Base cases
        if (bCount < 0 || cCount < 0)
            return 0;
        if (n == 0)
            return 1;
        if (bCount == 0 && cCount == 0)
            return 1;
     
        // if we had saw this combination previously
        if (dp[n,bCount,cCount] != -1)
            return dp[n,bCount,cCount];
     
        // Three cases, we choose, a or b or c
        // In all three cases n decreases by 1.
        int res = countStrUtil(dp, n - 1, bCount, cCount);
        res += countStrUtil(dp, n - 1, bCount - 1, cCount);
        res += countStrUtil(dp, n - 1, bCount, cCount - 1);
     
        return (dp[n, bCount, cCount] = res);
    }
     
    // A wrapper over countStrUtil()
    static int countStr(int n)
    {
        int[,,] dp = new int[n + 1, 2, 3];
        for(int i = 0; i < n + 1; i++)
            for(int j = 0; j < 2; j++)
                for(int k = 0; k < 3; k++)
                    dp[i, j, k] = -1;
        return countStrUtil(dp, n);
    }
     
    // Driver code
    static void Main()
    {
        int n = 3; // Total number of characters
         
        Console.Write(countStr(n));
    }
}
 
// This code is contributed by DrRoot_


Javascript




<script>
 
// javascript program to count number of strings
// of n characters with
 
    // n is total number of characters.
    // bCount and cCount are counts of 'b'
    // and 'c' respectively.
 
    function countStrUtil(dp , n, bCount , cCount)
    {
 
        // Base cases
        if (bCount < 0 || cCount < 0)
        {
            return 0;
        }
        if (n == 0)
        {
            return 1;
        }
        if (bCount == 0 && cCount == 0)
        {
            return 1;
        }
 
        // if we had saw this combination previously
        if (dp[n][bCount][cCount] != -1)
        {
            return dp[n][bCount][cCount];
        }
 
        // Three cases, we choose, a or b or c
        // In all three cases n decreases by 1.
        var res = countStrUtil(dp, n - 1, bCount, cCount);
        res += countStrUtil(dp, n - 1, bCount - 1, cCount);
        res += countStrUtil(dp, n - 1, bCount, cCount - 1);
 
        return (dp[n][bCount][cCount] = res);
    }
 
    // A wrapper over countStrUtil()
    function countStr(n , bCount , cCount)
    {
        dp = Array(n+1).fill(0).map
        (x => Array(2).fill(0).map
        (x => Array(3).fill(0)));
        for (i = 0; i < n + 1; i++)
        {
            for (j = 0; j < 2; j++)
            {
                for (k = 0; k < 3; k++)
                {
                    dp[i][j][k] = -1;
                }
            }
        }
        return countStrUtil(dp, n,bCount,cCount);
    }
 
// Driver code
var n = 3; // Total number of characters
var bCount = 1, cCount = 2;
document.write(countStr(n,bCount,cCount));
 
 
// This code contributed by shikhasingrajput
 
</script>


Output

19

Time Complexity : O(n) 
Auxiliary Space : O(n)

Thanks to Mr. Lazy for suggesting above solutions.

A solution that works in O(1) time : 

We can apply the concepts of combinatorics to solve this problem in constant time. we may recall the formula that the number of ways we can arrange a total of n objects, out of which p number of objects are of one type, q objects are of another type, and r objects are of the third type is n!/(p!q!r!)

Let us proceed towards the solution step by step.

How many strings we can form with no ‘b’ and ‘c’? The answer is 1 because we can arrange a string consisting of only ‘a’ in one way only and the string would be aaaa….(n times).

How many strings we can form with one ‘b’? The answer is n because we can arrange a string consisting (n-1) ‘a’s and 1 ‘b’ is n!/(n-1)! = n . The same goes for ‘c’ .

How many strings we can form with 2 places, filled up by ‘b’ and/or ‘c’ ?  Answer is n*(n-1) + n*(n-1)/2 . Because that 2 places can be either 1 ‘b’ and 1 ‘c’  or 2 ‘c’ according to our given constraints. For the first case, total number of arrangements is n!/(n-2)! = n*(n-1) and for second case that is n!/(2!(n-2)!) = n*(n-1)/2 .

Finally, how many strings we can form with 3 places, filled up by ‘b’ and/or ‘c’ ?  Answer is (n-2)*(n-1)*n/2 . Because those 3 places can only be consisting of 1 ‘b’ and 2’c’  according to our given constraints. So, total number of arrangements is n!/(2!(n-3)!) = (n-2)*(n-1)*n/2 .

Implementation:

C++




// A O(1) CPP program to find number of strings
// that can be made under given constraints.
#include<bits/stdc++.h>
using namespace std;
int countStr(int n){
     
    int count = 0;
     
    if(n>=1){
        //aaa...
        count += 1;
        //b...aaa...
          count += n;
        //c...aaa...
        count += n;
         
        if(n>=2){
          //bc...aaa...
          count += n*(n-1);
          //cc...aaa...
          count += n*(n-1)/2;
           
          if(n>=3){
            //bcc...aaa...
            count += (n-2)*(n-1)*n/2;
          }
        }
     
    }
     
    return count;
     
}
 
// Driver code
int main()
{
  int n = 3;
  cout << countStr(n);
  return 0;
}


Java




// A O(1) Java program to
// find number of strings
// that can be made under
// given constraints.
import java.io.*;
 
class GFG
{
    static int countStr(int n)
    {
    return 1 + (n * 2) +
           (n * ((n * n) - 1) / 2);
    }
 
// Driver code
public static void main (String[] args)
{
    int n = 3;
    System.out.println( countStr(n));
}
}
 
// This code is contributed by ajit


Python 3




# A O(1) Python3 program to find
# number of strings that can be
# made under given constraints.
 
def countStr(n):
    return (1 + (n * 2) +
                (n * ((n * n) - 1) // 2))
 
# Driver code
if __name__ == "__main__":
    n = 3
    print(countStr(n))
 
# This code is contributed
# by ChitraNayal


C#




// A O(1) C# program to
// find number of strings
// that can be made under
// given constraints.
using System;
 
class GFG
{
    static int countStr(int n)
    {
    return 1 + (n * 2) +
          (n * ((n * n) - 1) / 2);
    }
 
// Driver code
static public void Main ()
{
    int n = 3;
    Console.WriteLine(countStr(n));
}
}
 
// This code is contributed by m_kit


PHP




<?php
// A O(1) PHP program to find
// number of strings that can
// be made under given constraints.
function countStr($n)
{
    return 1 + ($n * 2) + ($n *
              (($n * $n) - 1) / 2);
}
 
// Driver code
$n = 3;
echo countStr($n);
 
// This code is contributed by aj_36
?>


Javascript




<script>
// A O(1) javascript program to
// find number of strings
// that can be made under
// given constraints.
    function countStr(n) {
        return 1 + (n * 2) + (n * ((n * n) - 1) / 2);
    }
 
    // Driver code
     
        var n = 3;
        document.write(countStr(n));
 
// This code is contributed by Princi Singh
</script>


Output

19

Time Complexity : O(1) 
Auxiliary Space : O(1)

Thanks to Niharika Sahai for providing above solution.

This article is contributed by Nishant Singh. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments