Given a length n, count the number of strings of length n that can be made using ‘a’, ‘b’ and ‘c’ with at most one ‘b’ and two ‘c’s allowed.
Examples :
Input : n = 3 Output : 19 Below strings follow given constraints: aaa aab aac aba abc aca acb acc baa bac bca bcc caa cab cac cba cbc cca ccb Input : n = 4 Output : 39
Asked in Google Interview
A simple solution is to recursively count all possible combinations of strings that can be made up to latter ‘a’, ‘b’, and ‘c’.
Below is the implementation of the above idea
C++
// C++ program to count number of strings // of n characters with #include<bits/stdc++.h> using namespace std; // n is total number of characters. // bCount and cCount are counts of 'b' // and 'c' respectively. int countStr( int n, int bCount, int cCount) { // Base cases if (bCount < 0 || cCount < 0) return 0; if (n == 0) return 1; if (bCount == 0 && cCount == 0) return 1; // Three cases, we choose, a or b or c // In all three cases n decreases by 1. int res = countStr(n-1, bCount, cCount); res += countStr(n-1, bCount-1, cCount); res += countStr(n-1, bCount, cCount-1); return res; } // Driver code int main() { int n = 3; // Total number of characters cout << countStr(n, 1, 2); return 0; } |
Java
// Java program to count number // of strings of n characters with import java.io.*; class GFG { // n is total number of characters. // bCount and cCount are counts of 'b' // and 'c' respectively. static int countStr( int n, int bCount, int cCount) { // Base cases if (bCount < 0 || cCount < 0 ) return 0 ; if (n == 0 ) return 1 ; if (bCount == 0 && cCount == 0 ) return 1 ; // Three cases, we choose, a or b or c // In all three cases n decreases by 1. int res = countStr(n - 1 , bCount, cCount); res += countStr(n - 1 , bCount - 1 , cCount); res += countStr(n - 1 , bCount, cCount - 1 ); return res; } // Driver code public static void main (String[] args) { int n = 3 ; // Total number of characters System.out.println(countStr(n, 1 , 2 )); } } // This code is contributed by akt_mit |
Python 3
# Python 3 program to # count number of strings # of n characters with # n is total number of characters. # bCount and cCount are counts # of 'b' and 'c' respectively. def countStr(n, bCount, cCount): # Base cases if (bCount < 0 or cCount < 0 ): return 0 if (n = = 0 ) : return 1 if (bCount = = 0 and cCount = = 0 ): return 1 # Three cases, we choose, a or b or c # In all three cases n decreases by 1. res = countStr(n - 1 , bCount, cCount) res + = countStr(n - 1 , bCount - 1 , cCount) res + = countStr(n - 1 , bCount, cCount - 1 ) return res # Driver code if __name__ = = "__main__" : n = 3 # Total number of characters print (countStr(n, 1 , 2 )) # This code is contributed # by ChitraNayal |
C#
// C# program to count number // of strings of n characters // with a, b and c under given // constraints using System; class GFG { // n is total number of // characters. bCount and // cCount are counts of // 'b' and 'c' respectively. static int countStr( int n, int bCount, int cCount) { // Base cases if (bCount < 0 || cCount < 0) return 0; if (n == 0) return 1; if (bCount == 0 && cCount == 0) return 1; // Three cases, we choose, // a or b or c. In all three // cases n decreases by 1. int res = countStr(n - 1, bCount, cCount); res += countStr(n - 1, bCount - 1, cCount); res += countStr(n - 1, bCount, cCount - 1); return res; } // Driver code static public void Main () { // Total number // of characters int n = 3; Console.WriteLine(countStr(n, 1, 2)); } } // This code is contributed by aj_36 |
PHP
<?php // PHP program to count number of // strings of n characters with // n is total number of characters. // bCount and cCount are counts // of 'b' and 'c' respectively. function countStr( $n , $bCount , $cCount ) { // Base cases if ( $bCount < 0 || $cCount < 0) return 0; if ( $n == 0) return 1; if ( $bCount == 0 && $cCount == 0) return 1; // Three cases, we choose, // a or b or c. In all three // cases n decreases by 1. $res = countStr( $n - 1, $bCount , $cCount ); $res += countStr( $n - 1, $bCount - 1, $cCount ); $res += countStr( $n - 1, $bCount , $cCount - 1); return $res ; } // Driver code $n = 3; // Total number // of characters echo countStr( $n , 1, 2); // This code is contributed by ajit ?> |
Javascript
<script> // JavaScript program for the above approach // n is total number of characters. // bCount and cCount are counts of 'b' // and 'c' respectively. function countStr(n, bCount, cCount) { // Base cases if (bCount < 0 || cCount < 0) return 0; if (n == 0) return 1; if (bCount == 0 && cCount == 0) return 1; // Three cases, we choose, a or b or c // In all three cases n decreases by 1. let res = countStr(n - 1, bCount, cCount); res += countStr(n - 1, bCount - 1, cCount); res += countStr(n - 1, bCount, cCount - 1); return res; } // Driver Code let n = 3; // Total number of characters document.write(countStr(n, 1, 2)); // This code is contributed by splevel62. </script> |
19
Time Complexity: O(3^N).
Auxiliary Space: O(1).
Efficient Solution:
If we drown a recursion tree of the above code, we can notice that the same values appear multiple times. So we store results that are used later if repeated.
C++
// C++ program to count number of strings // of n characters with #include<bits/stdc++.h> using namespace std; // n is total number of characters. // bCount and cCount are counts of 'b' // and 'c' respectively. int countStrUtil( int dp[][2][3], int n, int bCount=1, int cCount=2) { // Base cases if (bCount < 0 || cCount < 0) return 0; if (n == 0) return 1; if (bCount == 0 && cCount == 0) return 1; // if we had saw this combination previously if (dp[n][bCount][cCount] != -1) return dp[n][bCount][cCount]; // Three cases, we choose, a or b or c // In all three cases n decreases by 1. int res = countStrUtil(dp, n-1, bCount, cCount); res += countStrUtil(dp, n-1, bCount-1, cCount); res += countStrUtil(dp, n-1, bCount, cCount-1); return (dp[n][bCount][cCount] = res); } // A wrapper over countStrUtil() int countStr( int n) { int dp[n+1][2][3]; memset (dp, -1, sizeof (dp)); return countStrUtil(dp, n); } // Driver code int main() { int n = 3; // Total number of characters cout << countStr(n); return 0; } |
Java
// Java program to count number of strings // of n characters with class GFG { // n is total number of characters. // bCount and cCount are counts of 'b' // and 'c' respectively. static int countStrUtil( int [][][] dp, int n, int bCount, int cCount) { // Base cases if (bCount < 0 || cCount < 0 ) { return 0 ; } if (n == 0 ) { return 1 ; } if (bCount == 0 && cCount == 0 ) { return 1 ; } // if we had saw this combination previously if (dp[n][bCount][cCount] != - 1 ) { return dp[n][bCount][cCount]; } // Three cases, we choose, a or b or c // In all three cases n decreases by 1. int res = countStrUtil(dp, n - 1 , bCount, cCount); res += countStrUtil(dp, n - 1 , bCount - 1 , cCount); res += countStrUtil(dp, n - 1 , bCount, cCount - 1 ); return (dp[n][bCount][cCount] = res); } // A wrapper over countStrUtil() static int countStr( int n, int bCount, int cCount) { int [][][] dp = new int [n + 1 ][ 2 ][ 3 ]; for ( int i = 0 ; i < n + 1 ; i++) { for ( int j = 0 ; j < 2 ; j++) { for ( int k = 0 ; k < 3 ; k++) { dp[i][j][k] = - 1 ; } } } return countStrUtil(dp, n,bCount,cCount); } // Driver code public static void main(String[] args) { int n = 3 ; // Total number of characters int bCount = 1 , cCount = 2 ; System.out.println(countStr(n,bCount,cCount)); } } // This code has been contributed by 29AjayKumar |
Python3
# Python 3 program to count number of strings # of n characters with # n is total number of characters. # bCount and cCount are counts of 'b' # and 'c' respectively. def countStrUtil(dp, n, bCount = 1 ,cCount = 2 ): # Base cases if (bCount < 0 or cCount < 0 ): return 0 if (n = = 0 ): return 1 if (bCount = = 0 and cCount = = 0 ): return 1 # if we had saw this combination previously if (dp[n][bCount][cCount] ! = - 1 ): return dp[n][bCount][cCount] # Three cases, we choose, a or b or c # In all three cases n decreases by 1. res = countStrUtil(dp, n - 1 , bCount, cCount) res + = countStrUtil(dp, n - 1 , bCount - 1 , cCount) res + = countStrUtil(dp, n - 1 , bCount, cCount - 1 ) dp[n][bCount][cCount] = res return dp[n][bCount][cCount] # A wrapper over countStrUtil() def countStr(n): dp = [ [ [ - 1 for x in range ( 2 + 1 )] for y in range ( 1 + 1 )] for z in range (n + 1 )] return countStrUtil(dp, n) # Driver code if __name__ = = "__main__" : n = 3 # Total number of characters print (countStr(n)) # This code is contributed by chitranayal |
C#
// C# program to count number of strings // of n characters with using System; class GFG { // n is total number of characters. // bCount and cCount are counts of 'b' // and 'c' respectively. static int countStrUtil( int [,,] dp, int n, int bCount=1, int cCount=2) { // Base cases if (bCount < 0 || cCount < 0) return 0; if (n == 0) return 1; if (bCount == 0 && cCount == 0) return 1; // if we had saw this combination previously if (dp[n,bCount,cCount] != -1) return dp[n,bCount,cCount]; // Three cases, we choose, a or b or c // In all three cases n decreases by 1. int res = countStrUtil(dp, n - 1, bCount, cCount); res += countStrUtil(dp, n - 1, bCount - 1, cCount); res += countStrUtil(dp, n - 1, bCount, cCount - 1); return (dp[n, bCount, cCount] = res); } // A wrapper over countStrUtil() static int countStr( int n) { int [,,] dp = new int [n + 1, 2, 3]; for ( int i = 0; i < n + 1; i++) for ( int j = 0; j < 2; j++) for ( int k = 0; k < 3; k++) dp[i, j, k] = -1; return countStrUtil(dp, n); } // Driver code static void Main() { int n = 3; // Total number of characters Console.Write(countStr(n)); } } // This code is contributed by DrRoot_ |
Javascript
<script> // javascript program to count number of strings // of n characters with // n is total number of characters. // bCount and cCount are counts of 'b' // and 'c' respectively. function countStrUtil(dp , n, bCount , cCount) { // Base cases if (bCount < 0 || cCount < 0) { return 0; } if (n == 0) { return 1; } if (bCount == 0 && cCount == 0) { return 1; } // if we had saw this combination previously if (dp[n][bCount][cCount] != -1) { return dp[n][bCount][cCount]; } // Three cases, we choose, a or b or c // In all three cases n decreases by 1. var res = countStrUtil(dp, n - 1, bCount, cCount); res += countStrUtil(dp, n - 1, bCount - 1, cCount); res += countStrUtil(dp, n - 1, bCount, cCount - 1); return (dp[n][bCount][cCount] = res); } // A wrapper over countStrUtil() function countStr(n , bCount , cCount) { dp = Array(n+1).fill(0).map (x => Array(2).fill(0).map (x => Array(3).fill(0))); for (i = 0; i < n + 1; i++) { for (j = 0; j < 2; j++) { for (k = 0; k < 3; k++) { dp[i][j][k] = -1; } } } return countStrUtil(dp, n,bCount,cCount); } // Driver code var n = 3; // Total number of characters var bCount = 1, cCount = 2; document.write(countStr(n,bCount,cCount)); // This code contributed by shikhasingrajput </script> |
19
Time Complexity : O(n)
Auxiliary Space : O(n)
Thanks to Mr. Lazy for suggesting above solutions.
A solution that works in O(1) time :
We can apply the concepts of combinatorics to solve this problem in constant time. we may recall the formula that the number of ways we can arrange a total of n objects, out of which p number of objects are of one type, q objects are of another type, and r objects are of the third type is n!/(p!q!r!)
Let us proceed towards the solution step by step.
How many strings we can form with no ‘b’ and ‘c’? The answer is 1 because we can arrange a string consisting of only ‘a’ in one way only and the string would be aaaa….(n times).
How many strings we can form with one ‘b’? The answer is n because we can arrange a string consisting (n-1) ‘a’s and 1 ‘b’ is n!/(n-1)! = n . The same goes for ‘c’ .
How many strings we can form with 2 places, filled up by ‘b’ and/or ‘c’ ? Answer is n*(n-1) + n*(n-1)/2 . Because that 2 places can be either 1 ‘b’ and 1 ‘c’ or 2 ‘c’ according to our given constraints. For the first case, total number of arrangements is n!/(n-2)! = n*(n-1) and for second case that is n!/(2!(n-2)!) = n*(n-1)/2 .
Finally, how many strings we can form with 3 places, filled up by ‘b’ and/or ‘c’ ? Answer is (n-2)*(n-1)*n/2 . Because those 3 places can only be consisting of 1 ‘b’ and 2’c’ according to our given constraints. So, total number of arrangements is n!/(2!(n-3)!) = (n-2)*(n-1)*n/2 .
Implementation:
C++
// A O(1) CPP program to find number of strings // that can be made under given constraints. #include<bits/stdc++.h> using namespace std; int countStr( int n){ int count = 0; if (n>=1){ //aaa... count += 1; //b...aaa... count += n; //c...aaa... count += n; if (n>=2){ //bc...aaa... count += n*(n-1); //cc...aaa... count += n*(n-1)/2; if (n>=3){ //bcc...aaa... count += (n-2)*(n-1)*n/2; } } } return count; } // Driver code int main() { int n = 3; cout << countStr(n); return 0; } |
Java
// A O(1) Java program to // find number of strings // that can be made under // given constraints. import java.io.*; class GFG { static int countStr( int n) { return 1 + (n * 2 ) + (n * ((n * n) - 1 ) / 2 ); } // Driver code public static void main (String[] args) { int n = 3 ; System.out.println( countStr(n)); } } // This code is contributed by ajit |
Python 3
# A O(1) Python3 program to find # number of strings that can be # made under given constraints. def countStr(n): return ( 1 + (n * 2 ) + (n * ((n * n) - 1 ) / / 2 )) # Driver code if __name__ = = "__main__" : n = 3 print (countStr(n)) # This code is contributed # by ChitraNayal |
C#
// A O(1) C# program to // find number of strings // that can be made under // given constraints. using System; class GFG { static int countStr( int n) { return 1 + (n * 2) + (n * ((n * n) - 1) / 2); } // Driver code static public void Main () { int n = 3; Console.WriteLine(countStr(n)); } } // This code is contributed by m_kit |
PHP
<?php // A O(1) PHP program to find // number of strings that can // be made under given constraints. function countStr( $n ) { return 1 + ( $n * 2) + ( $n * (( $n * $n ) - 1) / 2); } // Driver code $n = 3; echo countStr( $n ); // This code is contributed by aj_36 ?> |
Javascript
<script> // A O(1) javascript program to // find number of strings // that can be made under // given constraints. function countStr(n) { return 1 + (n * 2) + (n * ((n * n) - 1) / 2); } // Driver code var n = 3; document.write(countStr(n)); // This code is contributed by Princi Singh </script> |
19
Time Complexity : O(1)
Auxiliary Space : O(1)
Thanks to Niharika Sahai for providing above solution.
This article is contributed by Nishant Singh. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!