Sunday, January 5, 2025
Google search engine
HomeData Modelling & AICount of Root to Leaf Paths consisting of at most M consecutive...

Count of Root to Leaf Paths consisting of at most M consecutive Nodes having value K

Given an Acyclic Undirected Graph in the form of a Binary Tree with the root at vertex 1 and values at each vertex [1, N] denoted by the array arr[], the task is to find the number of root to leaf paths that contain at most m consecutive nodes with value K.

Example:

Input: arr[] = {1, 0, 1, 0, 0, 1, 0}, K = 1, M = 2 
 

Output:
Explanation: 
Path 1 : 1 -> 2 -> 4 contains maximum 1 consecutive K 
Path 2 : 1 -> 2 -> 5 contains maximum 1 consecutive K 
Path 3 : 1 -> 3 -> 6 contains maximum 3 consecutive K 
Path 4 : 1 -> 3 -> 7 contains maximum 2 consecutive K 
Since the given value of M is 2, therefore there are 3 paths that contains atmost 2 consecutive K.

Input: arr[] = {2, 1, 3, 2, 1, 2, 1, 4, 3, 5, 2}, K = 2, M = 2 
 

            2
         /     \
        1       3
      /   \    /  \
     2     1  2    1
   /  \   / \
  4    3 5   2

Output: 3  

Approach: 
The problem can be solved using the Depth First Search approach: 

  • Depth First Search can be used to traverse all the paths from the root vertex.
  • Every time, if the value at the present node is K, increment the count.
  • Otherwise, set the count to 0.
  • If the count exceeds M, then return.
  • Otherwise, traverse its neighboring nodes and repeat the above steps.
  • Finally, print the value of the count obtained.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Initialize the adjacency
// list and visited array
vector<int> adj[100005];
int visited[100005] = { 0 };
int ans = 0;
 
// Function to find the number of root to
// leaf paths that contain atmost m
// consecutive nodes with value k
void dfs(int node, int count, int m,
         int arr[], int k)
{
    // Mark the current node
    // as visited
    visited[node] = 1;
 
    // If value at current node is k
    if (arr[node - 1] == k) {
 
        // Increment counter
        count++;
    }
    else {
        count = 0;
    }
 
    // If count is greater than m
    // return from that path
    if (count > m) {
        return;
    }
 
    // Path is allowed if size of present node
    // becomes 0 i.e it has no child root and
    // no more than m consecutive 1's
    if (adj[node].size() == 1 && node != 1) {
        ans++;
    }
 
    for (auto x : adj[node]) {
        if (!visited[x]) {
            dfs(x, count, m, arr, k);
        }
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 1, 3, 2, 1, 2, 1 };
    int N = 7, K = 2, M = 2;
 
    // Designing the tree
    adj[1].push_back(2);
    adj[2].push_back(1);
 
    adj[1].push_back(3);
    adj[3].push_back(1);
 
    adj[2].push_back(4);
    adj[4].push_back(2);
 
    adj[2].push_back(5);
    adj[5].push_back(2);
 
    adj[3].push_back(6);
    adj[6].push_back(3);
 
    adj[3].push_back(7);
    adj[7].push_back(3);
 
    // Counter counts no.
    // of consecutive nodes
    int counter = 0;
 
    dfs(1, counter, M, arr, K);
 
    cout << ans << "\n";
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Initialize the adjacency
// list and visited array
@SuppressWarnings("unchecked")
static Vector<Integer> []adj = new Vector[100005];
static int []visited = new int[100005];
static int ans = 0;
 
// Function to find the number of root to
// leaf paths that contain atmost m
// consecutive nodes with value k
static void dfs(int node, int count, int m,
                int arr[], int k)
{
     
    // Mark the current node
    // as visited
    visited[node] = 1;
 
    // If value at current node is k
    if (arr[node - 1] == k)
    {
         
        // Increment counter
        count++;
    }
    else
    {
        count = 0;
    }
 
    // If count is greater than m
    // return from that path
    if (count > m)
    {
        return;
    }
 
    // Path is allowed if size of present node
    // becomes 0 i.e it has no child root and
    // no more than m consecutive 1's
    if (adj[node].size() == 1 && node != 1)
    {
        ans++;
    }
 
    for(int x : adj[node])
    {
        if (visited[x] == 0)
        {
            dfs(x, count, m, arr, k);
        }
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 2, 1, 3, 2, 1, 2, 1 };
    int N = 7, K = 2, M = 2;
     
    for(int i = 0; i < adj.length; i++)
        adj[i] = new Vector<Integer>();
         
    // Designing the tree
    adj[1].add(2);
    adj[2].add(1);
 
    adj[1].add(3);
    adj[3].add(1);
 
    adj[2].add(4);
    adj[4].add(2);
 
    adj[2].add(5);
    adj[5].add(2);
 
    adj[3].add(6);
    adj[6].add(3);
 
    adj[3].add(7);
    adj[7].add(3);
 
    // Counter counts no.
    // of consecutive nodes
    int counter = 0;
 
    dfs(1, counter, M, arr, K);
 
    System.out.print(ans + "\n");
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 Program to implement
# the above approach
 
# Initialize the adjacency
# list and visited array
adj = [[] for i in range(100005)]
visited = [ 0 for i in range(100005)]
ans = 0;
  
# Function to find the number of root to
# leaf paths that contain atmost m
# consecutive nodes with value k
def dfs(node, count, m, arr, k):
     
    global ans
     
    # Mark the current node
    # as visited
    visited[node] = 1;
  
    # If value at current
    # node is k
    if (arr[node - 1] == k):
  
        # Increment counter
        count += 1;
     
    else:
        count = 0;   
  
    # If count is greater than m
    # return from that path
    if (count > m):
        return;   
  
    # Path is allowed if size
    # of present node becomes 0
    # i.e it has no child root and
    # no more than m consecutive 1's
    if (len(adj[node]) == 1 and node != 1):
        ans += 1
     
    for x in adj[node]:       
        if (not visited[x]):
            dfs(x, count, m, arr, k);
 
# Driver code
if __name__ == "__main__":
         
    arr = [2, 1, 3, 2, 1, 2, 1]
    N = 7
    K = 2
    M = 2
  
    # Designing the tree
    adj[1].append(2);
    adj[2].append(1);
  
    adj[1].append(3);
    adj[3].append(1);
  
    adj[2].append(4);
    adj[4].append(2);
  
    adj[2].append(5);
    adj[5].append(2);
  
    adj[3].append(6);
    adj[6].append(3);
  
    adj[3].append(7);
    adj[7].append(3);
  
    # Counter counts no.
    # of consecutive nodes
    counter = 0;
  
    dfs(1, counter, M, arr, K);   
    print(ans)       
 
# This code is contributed by rutvik_56


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Initialize the adjacency
// list and visited array
static List<int> []adj = new List<int>[100005];
static int []visited = new int[100005];
static int ans = 0;
 
// Function to find the number of root to
// leaf paths that contain atmost m
// consecutive nodes with value k
static void dfs(int node, int count, int m,
                int []arr, int k)
{
     
    // Mark the current node
    // as visited
    visited[node] = 1;
 
    // If value at current node is k
    if (arr[node - 1] == k)
    {
         
        // Increment counter
        count++;
    }
    else
    {
        count = 0;
    }
 
    // If count is greater than m
    // return from that path
    if (count > m)
    {
        return;
    }
 
    // Path is allowed if size of present node
    // becomes 0 i.e it has no child root and
    // no more than m consecutive 1's
    if (adj[node].Count == 1 && node != 1)
    {
        ans++;
    }
 
    foreach(int x in adj[node])
    {
        if (visited[x] == 0)
        {
            dfs(x, count, m, arr, k);
        }
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 2, 1, 3, 2, 1, 2, 1 };
    int K = 2, M = 2;
     
    for(int i = 0; i < adj.Length; i++)
        adj[i] = new List<int>();
         
    // Designing the tree
    adj[1].Add(2);
    adj[2].Add(1);
 
    adj[1].Add(3);
    adj[3].Add(1);
 
    adj[2].Add(4);
    adj[4].Add(2);
 
    adj[2].Add(5);
    adj[5].Add(2);
 
    adj[3].Add(6);
    adj[6].Add(3);
 
    adj[3].Add(7);
    adj[7].Add(3);
 
    // Counter counts no.
    // of consecutive nodes
    int counter = 0;
 
    dfs(1, counter, M, arr, K);
 
    Console.Write(ans + "\n");
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
    // Javascript Program to implement the above approach
     
    // Initialize the adjacency
    // list and visited array
    let adj = new Array(100005);
    let visited = new Array(100005);
    visited.fill(0);
    let ans = 0;
 
    // Function to find the number of root to
    // leaf paths that contain atmost m
    // consecutive nodes with value k
    function dfs(node, count, m, arr, k)
    {
 
        // Mark the current node
        // as visited
        visited[node] = 1;
 
        // If value at current node is k
        if (arr[node - 1] == k)
        {
 
            // Increment counter
            count++;
        }
        else
        {
            count = 0;
        }
 
        // If count is greater than m
        // return from that path
        if (count > m)
        {
            return;
        }
 
        // Path is allowed if size of present node
        // becomes 0 i.e it has no child root and
        // no more than m consecutive 1's
        if (adj[node].length == 1 && node != 1)
        {
            ans++;
        }
 
        for(let x = 0; x < adj[node].length; x++)
        {
            if (visited[adj[node][x]] == 0)
            {
                dfs(adj[node][x], count, m, arr, k);
            }
        }
    }
     
    let arr = [ 2, 1, 3, 2, 1, 2, 1 ];
    let K = 2, M = 2;
      
    for(let i = 0; i < adj.length; i++)
        adj[i] = [];
          
    // Designing the tree
    adj[1].push(2);
    adj[2].push(1);
  
    adj[1].push(3);
    adj[3].push(1);
  
    adj[2].push(4);
    adj[4].push(2);
  
    adj[2].push(5);
    adj[5].push(2);
  
    adj[3].push(6);
    adj[6].push(3);
  
    adj[3].push(7);
    adj[7].push(3);
  
    // Counter counts no.
    // of consecutive nodes
    let counter = 0;
  
    dfs(1, counter, M, arr, K);
  
    document.write(ans + "</br>");
 
</script>


Output: 

4

 

Time Complexity: O(V + E) 
Auxiliary Space: O(V)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments