Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of Palindromic Strings possible by swapping of a pair of Characters

Count of Palindromic Strings possible by swapping of a pair of Characters

Given a palindromic string S, the task is to find the count of palindromic strings possible by swapping a pair of character at a time.
Examples:

Input: s = “abba” 
Output:
Explanation: 
1st Swap: abba -> abba 
2nd Swap: abba -> abb
All other swaps will lead to a non-palindromic string. 
Therefore, the count of possible strings is 2.
Input: s = “aaabaaa” 
Output: 15

Naive Approach: 
The simplest approach to solve the problem is to generate all possible pair of characters from the given string and for each pair if swapping them generates a palindromic string or not. If found to be true, increase count. Finally, print the value of count
Time Complexity: O(N3
Auxiliary Space: O(1)
Efficient Approach: 
To optimize the above-mentioned approach, calculate the frequencies of each character in the string. For the string to remain a palindrome, only the same character can be swapped in the string. 
Follow the steps below to solve the problem:

  • Traverse the string.
  • For every ith character, increase count with the current frequency of the character. This increases the number of swaps the current character can make with its previous occurrences.
  • Increase the frequency of the ith character.
  • Finally, after complete traversal of the string, print count.

Below is the implementation of above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// possible palindromic strings
long long findNewString(string s)
{
 
    long long ans = 0;
 
    // Stores the frequencies
    // of each character
    int freq[26];
 
    // Stores the length of
    // the string
    int n = s.length();
 
    // Initialize frequencies
    memset(freq, 0, sizeof freq);
 
    for (int i = 0; i < (int)s.length(); ++i) {
 
        // Increase the number of swaps,
        // the current character make with
        // its previous occurrences
        ans += freq[s[i] - 'a'];
 
        // Increase frequency
        freq[s[i] - 'a']++;
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    string s = "aaabaaa";
    cout << findNewString(s) << '\n';
 
    return 0;
}


Java




// Java Program to implement
// the above approach
import java.util.*;
class GFG{
 
// Function to return the count of
// possible palindromic Strings
static long findNewString(String s)
{
    long ans = 0;
 
    // Stores the frequencies
    // of each character
    int []freq = new int[26];
 
    // Stores the length of
    // the String
    int n = s.length();
 
    // Initialize frequencies
    Arrays.fill(freq, 0);
 
    for (int i = 0; i < (int)s.length(); ++i)
    {
 
        // Increase the number of swaps,
        // the current character make with
        // its previous occurrences
        ans += freq[s.charAt(i) - 'a'];
 
        // Increase frequency
        freq[s.charAt(i) - 'a']++;
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    String s = "aaabaaa";
    System.out.print(findNewString(s));
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program to implement
# the above approach
 
# Function to return the count of
# possible palindromic strings
def findNewString(s):
 
    ans = 0
 
    # Stores the frequencies
    # of each character
    freq = [0] * 26
 
    # Stores the length of
    # the string
    n = len(s)
 
    for i in range(n):
 
        # Increase the number of swaps,
        # the current character make with
        # its previous occurrences
        ans += freq[ord(s[i]) - ord('a')]
 
        # Increase frequency
        freq[ord(s[i]) - ord('a')] += 1
     
    return ans
 
# Driver Code
s = "aaabaaa"
 
print(findNewString(s))
 
# This code is contributed by code_hunt


C#




// C# Program to implement
// the above approach
using System;
class GFG{
 
// Function to return the count of
// possible palindromic Strings
static long findNewString(String s)
{
    long ans = 0;
 
    // Stores the frequencies
    // of each character
    int []freq = new int[26];
 
    // Stores the length of
    // the String
    int n = s.Length;
 
    for (int i = 0; i < (int)s.Length; ++i)
    {
 
        // Increase the number of swaps,
        // the current character make with
        // its previous occurrences
        ans += freq[s[i] - 'a'];
 
        // Increase frequency
        freq[s[i] - 'a']++;
    }
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    String s = "aaabaaa";
    Console.Write(findNewString(s));
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
      // JavaScript program to implement
      // the above approach
      // Function to return the count of
      // possible palindromic strings
      function findNewString(s) {
        var ans = 0;
 
        // Stores the frequencies
        // of each character
        var freq = new Array(26).fill(0);
 
        // Stores the length of
        // the string
        var n = s.length;
 
        for (let i = 0; i < n; i++) {
          // Increase the number of swaps,
          // the current character make with
          // its previous occurrences
          ans += freq[s[i].charCodeAt(0) - "a".charCodeAt(0)];
 
          // Increase frequency
          freq[s[i].charCodeAt(0) - "a".charCodeAt(0)] += 1;
        }
        return ans;
      }
      // Driver Code
      var s = "aaabaaa";
      document.write(findNewString(s));
    </script>


Output: 

15

Time Complexity: O(N) 
Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments