Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of pairs (i, j) in the array such that arr is...

Count of pairs (i, j) in the array such that arr[i] is a factor of arr[j]

Given an array of integers arr, the task is to calculate the number of pairs (i, j) where i < j such that arr[j] % arr[i] = 0.
Examples: 
 

Input: arr[] = {1, 2, 3, 4, 5} 
Output: 5
Input: arr[] = {1, 1, 2, 2, 3, 3} 
Output: 11 
 

 

Approach 1: 
Iterate over all pairs of the array and keep incrementing the count of pairs that satisfy the required condition. 
Below code is the implementation of the above approach:
 

C++




// C++ Program to find
// the number of pairs
// (i, j) such that arr[i]
// is a factor of arr[j]
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// count of Pairs
int numPairs(int arr[], int n)
{
    int ans = 0;
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            if (arr[j] % arr[i] == 0)
                ans++;
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 2, 2, 3, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << numPairs(arr, n) << endl;
    return 0;
}


Java




// Java Program to find the number of pairs
// (i, j) such that arr[i] is a factor of arr[j]
import java.util.*;
import java.lang.*;
class GFG{
 
// Function to return the
// count of Pairs
static int numPairs(int arr[], int n)
{
    int ans = 0;
    for (int i = 0; i < n; i++)
    {
        for (int j = i + 1; j < n; j++)
        {
            if (arr[j] % arr[i] == 0)
                ans++;
        }
    }
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 1, 2, 2, 3, 3 };
    int n = arr.length;
 
    System.out.println(numPairs(arr, n));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program to find the number
# of pairs (i, j) such that arr[i]
# is a factor of arr[j]
 
# Function to return the
# count of Pairs
def numPairs(arr, n):
 
    ans = 0
    for i in range(n):
        for j in range(i + 1, n):
             
            if arr[j] % arr[i] == 0:
                ans += 1
 
    return ans
 
# Driver code
arr = [ 1, 1, 2, 2, 3, 3 ]
n = len(arr)
 
print(numPairs(arr, n))
 
# This code is contributed by divyamohan123


C#




// C# Program to find the number of pairs
// (i, j) such that arr[i] is a factor of arr[j]
using System;
 
class GFG{
 
// Function to return the
// count of Pairs
static int numPairs(int []arr, int n)
{
    int ans = 0;
    for(int i = 0; i < n; i++)
    {
       for(int j = i + 1; j < n; j++)
       {
          if (arr[j] % arr[i] == 0)
              ans++;
       }
    }
    return ans;
}
 
// Driver code
public static void Main()
{
    int []arr = { 1, 1, 2, 2, 3, 3 };
    int n = arr.Length;
 
    Console.Write(numPairs(arr, n));
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
    // Javascript Program to find
    // the number of pairs
    // (i, j) such that arr[i]
    // is a factor of arr[j]
     
    // Function to return the
    // count of Pairs
    function numPairs(arr, n)
    {
        let ans = 0;
        for (let i = 0; i < n; i++) {
            for (let j = i + 1; j < n; j++) {
                if (arr[j] % arr[i] == 0)
                    ans++;
            }
        }
        return ans;
    }
     
    let arr = [ 1, 1, 2, 2, 3, 3 ];
    let n = arr.length;
   
    document.write(numPairs(arr, n));
 
</script>


Output: 

11

 

Approach 2: Store the indices of all array elements in a map. Traverse the map and for every occurrence of an element: 
 

  • Add the occurrences of the same element after the current occurrence.
  • Add the occurrences of all its multiples after the current occurrence using upper_bound

Below code is the implementation of the above approach:
 

C++




// C++ Program to find
// the number of pairs
// (i, j) such that arr[i]
// is a factor of arr[j]
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// count of Pairs
int numPairs(int arr[], int n)
{
    map<int, vector<int> > mp;
    int mx = 0;
    for (int i = 0; i < n; i++) {
 
        // Update the maximum
        mx = max(mx, arr[i]);
 
        // Store the indices of
        // every element
        mp[arr[i]].push_back(i);
    }
 
    int ans = 0;
    for (auto i : mp) {
 
        int ctr = 1;
 
        // Access all indices of i
        for (int j : i.second) {
 
            // Add the number of
            // occurrences of i
            // after j-th index
            ans += i.second.size() - ctr;
 
            // Traverse all multiples of i
            for (int k = 2 * i.first;
                 k <= mx;
                 k += i.first) {
 
                // Find their occurrences
                // after the j-th index
                int numGreater = 0;
                if (mp.find(k) != mp.end())
                    numGreater
                        = int(
                            mp[k]
                                .end()
                            - upper_bound(
                                  mp[k].begin(),
                                  mp[k].end(), j));
                // Add the count
                ans += numGreater;
            }
            ctr++;
        }
    }
 
    return ans;
}
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << numPairs(arr, n) << endl;
    return 0;
}


Java




// Java Program to find
// the number of pairs
// (i, j) such that arr[i]
// is a factor of arr[j]
import java.util.*;
 
class GFG {
 
  static int upper_bound(ArrayList<Integer> arr, int ele)
  {
    for (int i = 0; i < arr.size(); i++)
      if (arr.get(i) > ele)
        return i;
    return arr.size();
  }
 
  // Function to return the
  // count of Pairs
  static int numPairs(int[] arr, int n)
  {
    HashMap<Integer, ArrayList<Integer> > mp
      = new HashMap<Integer, ArrayList<Integer> >();
    int mx = 0;
    for (int i = 0; i < n; i++) {
 
      // Update the maximum
      mx = Math.max(mx, arr[i]);
 
      // Store the indices of
      // every element
      ArrayList<Integer> l1;
      if (!mp.containsKey(arr[i]))
        l1 = new ArrayList<Integer>();
      else
        l1 = mp.get(arr[i]);
      l1.add(i);
      mp.put(arr[i], l1);
    }
 
    int ans = 0;
    for(var i : mp.entrySet())
    {
 
      int ctr = 1;
 
      // Access all indices of i
      for (int j : i.getValue())
      {
 
        // Add the number of
        // occurrences of i
        // after j-th index
        ans += (i.getValue()).size() - ctr;
 
        // Traverse all multiples of i
        for (int k = 2 * i.getKey(); k <= mx;
             k += i.getKey()) {
 
          // Find their occurrences
          // after the j-th index
          int numGreater = 0;
          if (mp.containsKey(k))
            numGreater = mp.get(k).size()
 
            - upper_bound(mp.get(k), j);
          // Add the count
          ans += numGreater;
        }
        ctr++;
      }
    }
 
    return ans;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int[] arr = { 1, 2, 3, 4, 5 };
    int n = arr.length;
 
    System.out.println(numPairs(arr, n));
  }
}
 
// This code is contributed by phasing17.


Python3




# Python3 Program to find
# the number of pairs
# (i, j) such that arr[i]
# is a factor of arr[j]
def upper_bound(arr, ele):
 
    for i in range(len(arr)):
        if (arr[i] > ele):
            return i;
    return len(arr)
 
# Function to return the
# count of Pairs
def numPairs(arr, n):
 
    mp = dict();
    mx = 0;
    for i in range(n):
 
        # Update the maximum
        mx = max(mx, arr[i]);
 
        # Store the indices of
        # every element
        if arr[i] not in mp:
            mp[arr[i]] = []
        mp[arr[i]].append(i);
 
    ans = 0;
    for first, second in mp.items():
         
        ctr = 1;
 
        # Access all indices of i
        for j in second:
 
            # Add the number of
            # occurrences of i
            # after j-th index
            ans += len(second) - ctr;
 
            # Traverse all multiples of i
            for k in range(2 * first, mx + 1, first):
 
                # Find their occurrences
                # after the j-th index
                numGreater = 0;
                if k in mp:
                    numGreater  = (len(mp[k]) - upper_bound(mp[k], j));
                # Add the count
                ans += numGreater;
             
            ctr += 1;
 
    return ans;
 
# Driver code
arr = [ 1, 2, 3, 4, 5 ];
n = len(arr);
 
print(numPairs(arr, n))
     
# This code is contributed by phasing17


C#




// C# Program to find
// the number of pairs
// (i, j) such that arr[i]
// is a factor of arr[j]
using System;
using System.Collections.Generic;
 
class GFG {
 
    static int upper_bound(List<int> arr, int ele)
    {
        for (var i = 0; i < arr.Count; i++)
            if (arr[i] > ele)
                return i;
        return arr.Count;
    }
   
    // Function to return the
    // count of Pairs
    static int numPairs(int[] arr, int n)
    {
        Dictionary<int, List<int> > mp
            = new Dictionary<int, List<int> >();
        int mx = 0;
        for (int i = 0; i < n; i++) {
 
            // Update the maximum
            mx = Math.Max(mx, arr[i]);
 
            // Store the indices of
            // every element
            if (!mp.ContainsKey(arr[i]))
                mp[arr[i]] = new List<int>();
            mp[arr[i]].Add(i);
        }
 
        int ans = 0;
        foreach(var i in mp)
        {
 
            int ctr = 1;
 
            // Access all indices of i
            foreach(int j in i.Value)
            {
 
                // Add the number of
                // occurrences of i
                // after j-th index
                ans += (i.Value).Count - ctr;
 
                // Traverse all multiples of i
                for (int k = 2 * i.Key; k <= mx;
                     k += i.Key) {
 
                    // Find their occurrences
                    // after the j-th index
                    int numGreater = 0;
                    if (mp.ContainsKey(k))
                        numGreater
                            = mp[k].Count
                              - upper_bound(mp[k], j);
                    // Add the count
                    ans += numGreater;
                }
                ctr++;
            }
        }
 
        return ans;
    }
   
    // Driver code
    public static void Main(string[] args)
    {
        int[] arr = { 1, 2, 3, 4, 5 };
        int n = arr.Length;
 
        Console.WriteLine(numPairs(arr, n));
    }
}
 
// This code is contributed by phasing17.


Javascript




// JS Program to find
// the number of pairs
// (i, j) such that arr[i]
// is a factor of arr[j]
function upper_bound(arr, ele)
{
    for (var i = 0; i < arr.length; i++)
        if (arr[i] > ele)
            return i;
    return arr.length;
}
 
// Function to return the
// count of Pairs
function numPairs(arr, n)
{
    let mp = {};
    let mx = 0;
    for (let i = 0; i < n; i++) {
 
        // Update the maximum
        mx = Math.max(mx, arr[i]);
 
        // Store the indices of
        // every element
        if (!mp.hasOwnProperty(arr[i]))
            mp[arr[i]] = []
        mp[arr[i]].push(i);
    }
 
    let ans = 0;
    for (let [first, second] of Object.entries(mp)) {
         
        first = parseInt(first)
         
        let ctr = 1;
 
        // Access all indices of i
        for (let j of second) {
 
            // Add the number of
            // occurrences of i
            // after j-th index
            ans += second.length - ctr;
 
            // Traverse all multiples of i
            for (let k = 2 * first;
                 k <= mx;
                 k += first) {
 
                // Find their occurrences
                // after the j-th index
                let numGreater = 0;
                if (mp.hasOwnProperty(k))
                    numGreater
                        = parseInt(mp[k].length - upper_bound(mp[k], j));
                // Add the count
                ans += numGreater;
            }
            ctr++;
        }
    }
 
    return ans;
}
 
// Driver code
let arr = [ 1, 2, 3, 4, 5 ];
let n = arr.length;
 
console.log(numPairs(arr, n))
     
// This code is contributed by phasing17


Output: 

5

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments