Given an array arr[], the task is to count pairs i, j such that, i < j and arr[i] + j = arr[j] + i.
Examples:
Input: arr[] = {4, 1, 2, 3}
Output: 3
Explanation: In total three pairs are satisfying the given condition those are {1, 2}, {2, 3} and {1, 3}.
So, the final answer is 3.Input: arr[] = {1, 5, 6}
Output: 1
Naive Approach: The naive approach for solving this problem is to check for each and every pair of the array for the given condition and count those pairs.
Time Complexity: O(N2), Where N is the size of arr[].
In order to get every pair we need to run two nested loops. Thus the time complexity will be O(N2).
Auxiliary Space: O(1).
As constant extra space is used.
Efficient approach: This problem can be solved by using hashmaps. At first, we can twist the condition that is given to us we can change arr[j] + i= arr[i]+ j it to arr[j] – j = arr[i] – i, which means two different numbers having the same difference in their value and index. That makes it easy, Now follow the steps below to solve the given problem.
- Create a map mp and a variable say, ans = 0, to store the answer.
- Traverse the whole array arr[] with say i.
- For each element, we will find out the difference in its value and index, simply a[i] – i.
- If there is some value present in the map that means there are other numbers with the same value so we will add those frequencies to the answer.
- Increase the value of mp[a[i] – i].
- Return ans as the final answer.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; // Function to count pairs with given properties int solve( int N, int arr[]) { // Map for the storing the frequency // of a given difference map< int , int > mp; // Variable to store the final ans int ans = 0; // Traverse the array and update mp for ( int i = 0; i < N; i++) { ans += mp[arr[i] - i]; mp[arr[i] - i]++; } // Return the final result return ans; } int main() { int N = 4; int arr[] = { 4, 1, 2, 3 }; // Print the result cout << solve(N, arr); return 0; } |
Java
import java.util.*; class GFG{ // Function to count pairs with given properties static int solve( int N, int arr[]) { // Map for the storing the frequency // of a given difference HashMap<Integer,Integer> mp = new HashMap<Integer,Integer>(); // Variable to store the final ans int ans = 0 ; // Traverse the array and update mp for ( int i = 0 ; i < N; i++) { if (mp.containsKey(arr[i]-i)){ ans+=mp.get(arr[i]-i); mp.put(arr[i]-i, mp.get(arr[i]-i)+ 1 ); } else { mp.put(arr[i]-i, 1 ); } } // Return the final result return ans; } public static void main(String[] args) { int N = 4 ; int arr[] = { 4 , 1 , 2 , 3 }; // Print the result System.out.print(solve(N, arr)); } } // This code is contributed by shikhasingrajput |
Python3
# Python Program to implement # the above approach # Function to count pairs with given properties def solve(N, arr): # Map for the storing the frequency # of a given difference mp = dict () # Variable to store the final ans ans = 0 # Traverse the array and update mp for i in range (N): if ((arr[i] - i) not in mp): mp[arr[i] - i] = 0 ans + = mp[arr[i] - i] mp[arr[i] - i] = mp[arr[i] - i] + 1 # Return the final result return ans N = 4 arr = [ 4 , 1 , 2 , 3 ] # Print the result print (solve(N, arr)) # This code is contributed by Saurabh Jaiswal |
C#
using System; using System.Collections.Generic; public class GFG{ // Function to count pairs with given properties static int solve( int N, int []arr) { // Map for the storing the frequency // of a given difference Dictionary< int , int > mp = new Dictionary< int , int >(); // Variable to store the readonly ans int ans = 0; // Traverse the array and update mp for ( int i = 0; i < N; i++) { if (mp.ContainsKey(arr[i]-i)){ ans+=mp[arr[i]-i]; mp[arr[i]-i]= mp[arr[i]-i]+1; } else { mp.Add(arr[i]-i, 1); } } // Return the readonly result return ans; } public static void Main(String[] args) { int N = 4; int []arr = { 4, 1, 2, 3 }; // Print the result Console.Write(solve(N, arr)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to count pairs with given properties function solve(N, arr) { // Map for the storing the frequency // of a given difference let mp = new Map(); // Variable to store the final ans let ans = 0; // Traverse the array and update mp for (let i = 0; i < N; i++) { if (mp.has(arr[i] - i) == false ) { mp.set(arr[i] - i, 0) } ans += mp.get(arr[i] - i); mp.set(arr[i] - i, mp.get(arr[i] - i) + 1); } // Return the final result return ans; } let N = 4; let arr = [4, 1, 2, 3]; // Print the result document.write(solve(N, arr)); // This code is contributed by Potta Lokesh </script> |
3
Time Complexity: , where N is the size of the array.
Auxiliary Space: O(N), where N is the size of the array.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!