Monday, January 20, 2025
Google search engine
HomeData Modelling & AICount of pairs (A, B) in range 1 to N such that...

Count of pairs (A, B) in range 1 to N such that last digit of A is equal to the first digit of B

Given a number N, the task is to find the number of pairs (A, B) in the range [1, N] such that the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B.
Examples: 
 

Input: N = 25 
Output: 17 
Explanation: 
The pairs are: 
(1, 1), (1, 11), (2, 2), (2, 22), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (11, 1), (11, 11), (12, 21), (21, 12), (22, 2), (22, 22)
Input: N = 100 
Output: 108 
 

 

Approach: For each pair of integers (i, j)(0 ? i, j ? 9), let us define ci, j (1 ? k ? N) which is the count of the first digit of k is equal to i, and the last digit is equal to j. By using ci, j, the answer for the problem can be calculated by ?i=09 ?j=09 ci, j * cj, i .
Below is the implementation of the above approach: 
 

CPP




// C++ program to implement the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to Count of pairs (A, B) in range 1 to N
int pairs(int n)
{
    vector<vector<int> > c(10, vector<int>(10, 0));
  
    int tmp = 1;
  
    // count C i, j
    for (int i = 1; i <= n; i++) {
        if (i >= tmp * 10)
            tmp *= 10;
        c[i / tmp][i % 10]++;
    }
  
    // Calculate number of pairs
    long long ans = 0;
    for (int i = 1; i < 10; i++)
        for (int j = 1; j < 10; j++)
            ans += (long long)c[i][j] * c[j][i];
  
    return ans;
}
  
// Driver code
int main()
{
    int n = 25;
  
    // Function call
    cout << pairs(n);
  
    return 0;
}


Java




// Java program to implement the above approach
  
class GFG{
   
// Function to Count of pairs (A, B) in range 1 to N
static int pairs(int n)
{
    int [][]c = new int[10][10];
   
    int tmp = 1;
   
    // count C i, j
    for (int i = 1; i <= n; i++) {
        if (i >= tmp * 10)
            tmp *= 10;
        c[i / tmp][i % 10]++;
    }
   
    // Calculate number of pairs
    int ans = 0;
    for (int i = 1; i < 10; i++)
        for (int j = 1; j < 10; j++)
            ans += c[i][j] * c[j][i];
   
    return ans;
}
   
// Driver code
public static void main(String[] args)
{
    int n = 25;
   
    // Function call
    System.out.print(pairs(n));
   
}
}
  
// This code is contributed by Rajput-Ji


Python3




# Python3 program to implement the above approach
  
# Function to Count of pairs (A, B) in range 1 to N
def pairs(n):
    c = [[0 for i in range(10)] for i in range(10)]
  
    tmp = 1
  
    # count C i, j
    for i in range(1, n + 1):
        if (i >= tmp * 10):
            tmp *= 10
        c[i // tmp][i % 10] += 1
  
    # Calculate number of pairs
    ans = 0
    for i in range(1, 10):
        for j in range(1, 10):
            ans += c[i][j] * c[j][i]
  
    return ans
  
# Driver code
if __name__ == '__main__':
    n = 25
  
    # Function call
    print(pairs(n))
  
# This code is contributed by mohit kumar 29    


C#




// C# program to implement the above approach
using System;
  
class GFG{
    
// Function to Count of pairs (A, B) in range 1 to N
static int pairs(int n)
{
    int [,]c = new int[10, 10];
    
    int tmp = 1;
    
    // count C i, j
    for (int i = 1; i <= n; i++) {
        if (i >= tmp * 10)
            tmp *= 10;
        c[i / tmp, i % 10]++;
    }
    
    // Calculate number of pairs
    int ans = 0;
    for (int i = 1; i < 10; i++)
        for (int j = 1; j < 10; j++)
            ans += c[i, j] * c[j, i];
    
    return ans;
}
    
// Driver code
public static void Main(String[] args)
{
    int n = 25;
    
    // Function call
    Console.Write(pairs(n));
    
}
}
  
// This code is contributed by Rajput-Ji


Javascript




<script>
  
// JavaScript program for the above approach
  
// Function to Count of pairs (A, B) in range 1 to N
function pairs(n)
{
    let c = new Array(10);
    for (var i = 0; i < c.length; i++) {
    c[i] = new Array(2);
    }
    for (var i = 0; i < c.length; i++) {
    for (var j = 0; j < c.length; j++) {
    c[i][j] = 0;
    }
    }
     
    let tmp = 1;
     
    // count C i, j
    for (let i = 1; i <= n; i++) {
        if (i >= tmp * 10)
            tmp *= 10;
        c[(Math.floor(i / tmp))][i % 10]++;
    }
     
    // Calculate number of pairs
    let ans = 0;
    for (let i = 1; i < 10; i++)
        for (let j = 1; j < 10; j++)
            ans += c[i][j] * c[j][i];
     
    return ans;
}
  
// Driver code
  
         let n = 25;
     
    // Function call
    document.write(pairs(n));
  
</script>


Output: 

17

 

Time Complexity: O(N)

Auxiliary Space: O(10*10)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments