Saturday, October 18, 2025
HomeData Modelling & AICount of odd and even sum pairs in an array

Count of odd and even sum pairs in an array

Given an array arr[] of N positive integers, the task is to find the number of pairs with odd sum and the number of pairs with even sum.
Examples: 
 

Input: arr[] = {1, 2, 3, 4, 5} 
Output: 
Odd pairs = 6 
Even pairs = 4
Input: arr[] = {7, 4, 3, 2} 
Output: 
Odd pairs = 4 
Even pairs = 2 
 

 

Naive Approach: 
The naive approach for this problem is to go through every pair of elements in the array, check for their sums and then count the number of pairs having odd and even sum. This approach will take O(N*N) time. 
Efficient Approach: 
 

  • Count the number of odd and even elements from the array and store them in variables cntEven and cntOdd.
  • In order to get the pair sum as even, all the even elements will be paired with only even elements and all the odd elements will be paired with only odd elements and the count will be ((cntEven * (cntEven – 1)) / 2) + ((cntOdd * (cntOdd – 1)) / 2)
  • Now, for the sum to be odd, one of the elements of the pair must be even and the other must be odd and the required count will be cntEven * cntOdd.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the count of pairs
// with odd sum and the count
// of pairs with even sum
void findPairs(int arr[], int n)
{
 
    // To store the count of even and
    // odd number from the array
    int cntEven = 0, cntOdd = 0;
 
    for (int i = 0; i < n; i++) {
 
        // If the current element is even
        if (arr[i] % 2 == 0)
            cntEven++;
 
        // If it is odd
        else
            cntOdd++;
    }
 
    // To store the count of
    // pairs with even sum
    int evenPairs = 0;
 
    // All the even elements will make
    // pairs with each other and the
    // sum of the pair will be even
    evenPairs += ((cntEven * (cntEven - 1)) / 2);
 
    // All the odd elements will make
    // pairs with each other and the
    // sum of the pair will be even
    evenPairs += ((cntOdd * (cntOdd - 1)) / 2);
 
    // To store the count of
    // pairs with odd sum
    int oddPairs = 0;
 
    // All the even elements will make pairs
    // with all the odd element and the
    // sum of the pair will be odd
    oddPairs += (cntEven * cntOdd);
 
    cout << "Odd pairs = " << oddPairs << endl;
    cout << "Even pairs = " << evenPairs;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(arr) / sizeof(int);
 
    findPairs(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to find the count of pairs
// with odd sum and the count
// of pairs with even sum
static void findPairs(int arr[], int n)
{
 
    // To store the count of even and
    // odd number from the array
    int cntEven = 0, cntOdd = 0;
 
    for (int i = 0; i < n; i++)
    {
 
        // If the current element is even
        if (arr[i] % 2 == 0)
            cntEven++;
 
        // If it is odd
        else
            cntOdd++;
    }
 
    // To store the count of
    // pairs with even sum
    int evenPairs = 0;
 
    // All the even elements will make
    // pairs with each other and the
    // sum of the pair will be even
    evenPairs += ((cntEven * (cntEven - 1)) / 2);
 
    // All the odd elements will make
    // pairs with each other and the
    // sum of the pair will be even
    evenPairs += ((cntOdd * (cntOdd - 1)) / 2);
 
    // To store the count of
    // pairs with odd sum
    int oddPairs = 0;
 
    // All the even elements will make pairs
    // with all the odd element and the
    // sum of the pair will be odd
    oddPairs += (cntEven * cntOdd);
 
    System.out.println("Odd pairs = " + oddPairs);
    System.out.println("Even pairs = " + evenPairs);
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = arr.length;
 
    findPairs(arr, n);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
 
# Function to find the count of pairs
# with odd sum and the count
# of pairs with even sum
def findPairs(arr, n) :
 
    # To store the count of even and
    # odd number from the array
    cntEven = 0; cntOdd = 0;
 
    for i in range(n) :
 
        # If the current element is even
        if (arr[i] % 2 == 0) :
            cntEven += 1;
 
        # If it is odd
        else :
            cntOdd += 1;
 
    # To store the count of
    # pairs with even sum
    evenPairs = 0;
 
    # All the even elements will make
    # pairs with each other and the
    # sum of the pair will be even
    evenPairs += ((cntEven * (cntEven - 1)) // 2);
 
    # All the odd elements will make
    # pairs with each other and the
    # sum of the pair will be even
    evenPairs += ((cntOdd * (cntOdd - 1)) // 2);
 
    # To store the count of
    # pairs with odd sum
    oddPairs = 0;
 
    # All the even elements will make pairs
    # with all the odd element and the
    # sum of the pair will be odd
    oddPairs += (cntEven * cntOdd);
 
    print("Odd pairs = ", oddPairs);
    print("Even pairs = ", evenPairs);
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 2, 3, 4, 5 ];
    n = len(arr);
 
    findPairs(arr, n);
 
# This code is contributed by kanugargng


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to find the count of pairs
// with odd sum and the count
// of pairs with even sum
static void findPairs(int []arr, int n)
{
 
    // To store the count of even and
    // odd number from the array
    int cntEven = 0, cntOdd = 0;
 
    for (int i = 0; i < n; i++)
    {
 
        // If the current element is even
        if (arr[i] % 2 == 0)
            cntEven++;
 
        // If it is odd
        else
            cntOdd++;
    }
 
    // To store the count of
    // pairs with even sum
    int evenPairs = 0;
 
    // All the even elements will make
    // pairs with each other and the
    // sum of the pair will be even
    evenPairs += ((cntEven * (cntEven - 1)) / 2);
 
    // All the odd elements will make
    // pairs with each other and the
    // sum of the pair will be even
    evenPairs += ((cntOdd * (cntOdd - 1)) / 2);
 
    // To store the count of
    // pairs with odd sum
    int oddPairs = 0;
 
    // All the even elements will make pairs
    // with all the odd element and the
    // sum of the pair will be odd
    oddPairs += (cntEven * cntOdd);
 
    Console.WriteLine("Odd pairs = " + oddPairs);
    Console.WriteLine("Even pairs = " + evenPairs);
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 3, 4, 5 };
    int n = arr.Length;
 
    findPairs(arr, n);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript implementation of the approach
 
// Function to find the count of pairs
// with odd sum and the count
// of pairs with even sum
function findPairs(arr, n) {
 
    // To store the count of even and
    // odd number from the array
    let cntEven = 0, cntOdd = 0;
 
    for (let i = 0; i < n; i++) {
 
        // If the current element is even
        if (arr[i] % 2 == 0)
            cntEven++;
 
        // If it is odd
        else
            cntOdd++;
    }
 
    // To store the count of
    // pairs with even sum
    let evenPairs = 0;
 
    // All the even elements will make
    // pairs with each other and the
    // sum of the pair will be even
    evenPairs += ((cntEven * (cntEven - 1)) / 2);
 
    // All the odd elements will make
    // pairs with each other and the
    // sum of the pair will be even
    evenPairs += ((cntOdd * (cntOdd - 1)) / 2);
 
    // To store the count of
    // pairs with odd sum
    let oddPairs = 0;
 
    // All the even elements will make pairs
    // with all the odd element and the
    // sum of the pair will be odd
    oddPairs += (cntEven * cntOdd);
 
    document.write("Odd pairs = " + oddPairs + "<br>");
    document.write("Even pairs = " + evenPairs);
}
 
// Driver code
let arr = [1, 2, 3, 4, 5];
let n = arr.length;
 
findPairs(arr, n);
 
// This code is contributed by _saurabh_jaiswal
</script>


Output: 

Odd pairs = 6
Even pairs = 4

 

Complexity Analysis: 
 

  • Time Complexity : O(N). 
    In every iteration of for loop, an element from either of the array is processed. Therefore, the time complexity is O(N).
  • Auxiliary Space : O(1). 
    Any extra space is not required, so the space complexity is constant.

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS