Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount of numbers upto N digits formed using digits 0 to K-1...

Count of numbers upto N digits formed using digits 0 to K-1 without any adjacent 0s

Given two integers N and K, the task is to count the numbers up to N digits such that no two zeros are adjacents and the range of digits are from 0 to K-1.
Examples: 

Input: N = 2, K = 3 
Output:
Explanation: 
There are 8 such numbers such that digits are from 0 to 2 only, without any adjacent 0s: {1, 2, 10, 11, 12, 20, 21, 22}

Input: N = 3, K = 3 
Output: 22 

Approach: The idea is to use Dynamic Programming to solve this problem. 
Let DP[i][j] be the number of desirable numbers up to ith digit of the number, and its last digit as j.
Observations:

  • The number of ways to fill a place is(K-1)
  • As we know, zero’s can’t be adjacent. So when our last element is 0, means the previous index is filled by 1 way, that is 0. Therefore, current place can only be filled by (K-1) digits.
  • If the last place is filled by (K-1) digits, Then current digit place can be filled by either 0 or (K-1) digits.

Base Case:

  • If n == 1 and last == K, then we can fill this place by (K-1) digits, return (K-1)
  • Else, return 1

Recurrence relation:

When last digit place is not filled by zero then 

dp[i][j] = (K-1)*solve(n-1, K) + (K-1)*solve(n-1, 1)
 
When Last digit place is filled by zero then 
 
dp[i][j] = solve(n-1, K)                 

Below is the implementation of above approach:

C++




// C++ implementation to count the
// numbers upto N digits such that
// no two zeros are adjacent
 
#include <bits/stdc++.h>
using namespace std;
 
int dp[15][10];
 
// Function to count the
// numbers upto N digits such that
// no two zeros are adjacent
int solve(int n, int last, int k)
{
    // Condition to check if only
    // one element remains
    if (n == 1) {
 
        // If last element is non
        // zero, return K-1
        if (last == k) {
            return (k - 1);
        }
        // If last element is 0
        else {
            return 1;
        }
    }
 
    // Condition to check if value
    // calculated already
    if (dp[n][last])
        return dp[n][last];
 
    // If last element is non zero,
    // then two cases arise,
    // current element can be either
    // zero or non zero
    if (last == k) {
 
        // Memoize this case
        return dp[n][last]
               = (k - 1)
                     * solve(n - 1, k, k)
                 + (k - 1)
                       * solve(n - 1, 1, k);
    }
 
    // If last is 0, then current
    // can only be non zero
    else {
 
        // Memoize and return
        return dp[n][last]
               = solve(n - 1, k, k);
    }
}
 
// Driver Code
int main()
{
    // Given N and K
    int n = 2, k = 3;
 
    // Function Call
    int x = solve(n, k, k)
            + solve(n, 1, k);
    cout << x;
}


Java




// Java implementation to count the
// numbers upto N digits such that
// no two zeros are adjacent
import java.io.*;
public class GFG{
     
static int[][] dp = new int[15][10];
 
// Function to count the numbers
// upto N digits such that
// no two zeros are adjacent
static int solve(int n, int last, int k)
{
     
    // Condition to check if only
    // one element remains
    if (n == 1)
    {
         
        // If last element is non
        // zero, return K-1
        if (last == k)
        {
            return (k - 1);
        }
         
        // If last element is 0
        else
        {
            return 1;
        }
    }
 
    // Condition to check if
    // value calculated already
    if (dp[n][last] == 1)
        return dp[n][last];
 
    // If last element is non zero,
    // then two cases arise, current
    // element can be either zero
    // or non zero
    if (last == k)
    {
         
        // Memoize this case
        return dp[n][last] = (k - 1) *
                        solve(n - 1, k, k) +
                             (k - 1) *
                        solve(n - 1, 1, k);
    }
     
    // If last is 0, then current
    // can only be non zero
    else
    {
 
        // Memoize and return
        return dp[n][last] = solve(n - 1, k, k);
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given N and K
    int n = 2, k = 3;
 
    // Function Call
    int x = solve(n, k, k) +
            solve(n, 1, k);
     
    System.out.print(x);
}
}
 
// This code is contributed by Ritik Bansal


Python3




# Python3 implementation to count the
# numbers upto N digits such that
# no two zeros are adjacent
dp = [[0] * 10 for j in range(15)]
 
# Function to count the numbers
# upto N digits such that no two
# zeros are adjacent
def solve(n, last, k):
 
    # Condition to check if only
    # one element remains
    if (n == 1):
 
        # If last element is non
        # zero, return K-1
        if (last == k):
            return (k - 1)
         
        # If last element is 0
        else:
            return 1
 
    # Condition to check if value
    # calculated already
    if (dp[n][last]):
        return dp[n][last]
 
    # If last element is non zero,
    # then two cases arise, current
    # element can be either zero or
    # non zero
    if (last == k):
 
        # Memoize this case
        dp[n][last] = ((k - 1) *
                  solve(n - 1, k, k) +
                       (k - 1) *
                  solve(n - 1, 1, k))
                        
        return dp[n][last]
 
    # If last is 0, then current
    # can only be non zero
    else:
 
        # Memoize and return
        dp[n][last] = solve(n - 1, k, k)
        return dp[n][last]
 
# Driver code
 
# Given N and K
n = 2
k = 3
 
# Function call
x = solve(n, k, k) + solve(n, 1, k)
 
print(x)
 
# This code is contributed by himanshu77


C#




// C# implementation to count the
// numbers upto N digits such that
// no two zeros are adjacent
using System;
 
class GFG{
     
public static int [,]dp = new int[15, 10];
 
// Function to count the numbers
// upto N digits such that
// no two zeros are adjacent
public static int solve(int n, int last, int k)
{
     
    // Condition to check if only
    // one element remains
    if (n == 1)
    {
         
        // If last element is non
        // zero, return K-1
        if (last == k)
        {
            return (k - 1);
        }
         
        // If last element is 0
        else
        {
            return 1;
        }
    }
 
    // Condition to check if
    // value calculated already
    if (dp[n, last] == 1)
        return dp[n, last];
 
    // If last element is non zero,
    // then two cases arise, current
    // element can be either zero
    // or non zero
    if (last == k)
    {
         
        // Memoize this case
        return dp[n, last] = (k - 1) *
                        solve(n - 1, k, k) +
                             (k - 1) *
                        solve(n - 1, 1, k);
    }
     
    // If last is 0, then current
    // can only be non zero
    else
    {
 
        // Memoize and return
        return dp[n, last] = solve(n - 1, k, k);
    }
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given N and K
    int n = 2, k = 3;
 
    // Function Call
    int x = solve(n, k, k) +
            solve(n, 1, k);
     
    Console.WriteLine(x);
}
}
 
// This code is contributed by SoumikMondal


Javascript




<script>
 
// Javascript implementation to count the
// numbers upto N digits such that
// no two zeros are adjacent
 
var dp = Array.from(Array(15),
() => Array(10).fill(0));
 
// Function to count the
// numbers upto N digits such that
// no two zeros are adjacent
function solve(n, last, k)
{
    // Condition to check if only
    // one element remains
    if (n == 1) {
 
        // If last element is non
        // zero, return K-1
        if (last == k) {
            return (k - 1);
        }
        // If last element is 0
        else {
            return 1;
        }
    }
 
    // Condition to check if value
    // calculated already
    if ((dp[n][last])!=0)
        return dp[n][last];
 
    // If last element is non zero,
    // then two cases arise,
    // current element can be either
    // zero or non zero
    if (last == k) {
 
        // Memoize this case
        return dp[n][last]
               = (k - 1)
                     * solve(n - 1, k, k)
                 + (k - 1)
                       * solve(n - 1, 1, k);
    }
 
    // If last is 0, then current
    // can only be non zero
    else {
 
        // Memoize and return
        dp[n][last]
               = solve(n - 1, k, k);
        return dp[n][last];
    }
}
 
// Driver Code
// Given N and K
var n = 2, k = 3;
// Function Call
var x = solve(n, k, k)
        + solve(n, 1, k);
document.write(x);
 
 
</script>


Output: 

8

 

Time Complexity: O(N) 
Auxiliary Space: O(N*10)
 

Another approach: Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a table DP to store the solution of the subproblems.
  • Initialize the table with base cases 
  • Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP.
  • At last return and print the final solution stored in x , where x = dp[n][k] + dp[n][1] .

Implementation :

C++




// C++ program for above approach
 
#include <bits/stdc++.h>
using namespace std;
 
int dp[15][10];
 
// Function to count the
// numbers upto N digits such that
// no two zeros are adjacent
int solve(int n, int k)
{
    // Initialize the base cases
    for (int i = 1; i <= k; i++) {
        dp[1][i] = (i == k) ? (k - 1) : 1;
    }
 
    // Fill the table using previously computed values
    for (int i = 2; i <= n; i++) {
        for (int j = 1; j <= k; j++) {
            if (j == k) {
                dp[i][j] = (k - 1) * dp[i - 1][k] + (k - 1) * dp[i - 1][1];
            } else {
                dp[i][j] = dp[i - 1][k];
            }
        }
    }
 
    // Compute the final result
    int x = dp[n][k] + dp[n][1];
    return x;
}
 
// Driver Code
int main()
{
    // Given N and K
    int n = 2, k = 3;
 
    // Function Call
    int x = solve(n, k);
    cout << x;
}
 
// this code contributed by bhardwajji


Java




import java.util.*;
 
public class Main {
    static int dp[][] = new int[15][10];
 
    // Function to count the
    // numbers upto N digits such that
    // no two zeros are adjacent
    static int solve(int n, int k) {
        // Initialize the base cases
        for (int i = 1; i <= k; i++) {
            dp[1][i] = (i == k) ? (k - 1) : 1;
        }
 
        // Fill the table using previously computed values
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= k; j++) {
                if (j == k) {
                    dp[i][j] = (k - 1) * dp[i - 1][k] + (k - 1) * dp[i - 1][1];
                } else {
                    dp[i][j] = dp[i - 1][k];
                }
            }
        }
 
        // Compute the final result
        int x = dp[n][k] + dp[n][1];
        return x;
    }
 
    // Driver Code
    public static void main(String[] args) {
        // Given N and K
        int n = 2, k = 3;
 
        // Function Call
        int x = solve(n, k);
        System.out.println(x);
    }
}


Python3




# Python program for above approach
 
# Function to count the
# numbers upto N digits such that
# no two zeros are adjacent
def solve(n, k):
    dp = [[0 for i in range(10)] for j in range(15)]
 
    # Initialize the base cases
    for i in range(1, k + 1):
        dp[1][i] = k - 1 if i == k else 1
 
    # Fill the table using previously computed values
    for i in range(2, n + 1):
        for j in range(1, k + 1):
            if j == k:
                dp[i][j] = (k - 1) * dp[i - 1][k] + (k - 1) * dp[i - 1][1]
            else:
                dp[i][j] = dp[i - 1][k]
 
    # Compute the final result
    x = dp[n][k] + dp[n][1]
    return x
 
# Driver Code
if __name__ == "__main__":
    # Given N and K
    n = 2
    k = 3
 
    # Function Call
    x = solve(n, k)
    print(x)


Javascript




// JavaScript program for above approach
 
let dp = Array.from({length: 15}, () => Array.from({length: 10}).fill(0));
 
// Function to count the
// numbers upto N digits such that
// no two zeros are adjacent
function solve(n, k)
{
// Initialize the base cases
for (let i = 1; i <= k; i++) {
dp[1][i] = (i == k) ? (k - 1) : 1;
}
// Fill the table using previously computed values
for (let i = 2; i <= n; i++) {
    for (let j = 1; j <= k; j++) {
        if (j == k) {
            dp[i][j] = (k - 1) * dp[i - 1][k] + (k - 1) * dp[i - 1][1];
        } else {
            dp[i][j] = dp[i - 1][k];
        }
    }
}
 
// Compute the final result
let x = dp[n][k] + dp[n][1];
return x;
}
 
// Driver Code
let n = 3, k = 3;
 
// Function Call
let x = solve(n, k);
console.log(x);


C#




// C# program for above approach
 
using System;
 
class Program
{
static int[,] dp = new int[15, 10];
  // Function to count the
// numbers upto N digits such that
// no two zeros are adjacent
static int Solve(int n, int k)
{
    // Initialize the base cases
    for (int i = 1; i <= k; i++) {
        dp[1, i] = (i == k) ? (k - 1) : 1;
    }
 
    // Fill the table using previously computed values
    for (int i = 2; i <= n; i++) {
        for (int j = 1; j <= k; j++) {
            if (j == k) {
                dp[i, j] = (k - 1) * dp[i - 1, k] + (k - 1) * dp[i - 1, 1];
            } else {
                dp[i, j] = dp[i - 1, k];
            }
        }
    }
 
    // Compute the final result
    int x = dp[n, k] + dp[n, 1];
    return x;
}
 
// Driver Code
static void Main(string[] args)
{
    // Given N and K
    int n = 2, k = 3;
 
    // Function Call
    int x = Solve(n, k);
    Console.WriteLine(x);
}
}


Output

8

Time Complexity: O(N*K) 
Auxiliary Space: O(N*10)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments