Given a range represented by two positive integers L and R and a positive integer K. Find the count of numbers in the range where the number does not contain more than K non zero digits.
Examples:
Input : L = 1, R = 1000, K = 3 Output : 1000 Explanation : All the numbers from 1 to 1000 are 3 digit numbers which obviously cannot contain more than 3 non zero digits. Input : L = 9995, R = 10005 Output : 6 Explanation : Required numbers are 10000, 10001, 10002, 10003, 10004 and 10005
Prerequisites : Digit DP
There can be two approaches to solve this type of problem, one can be a combinatorial solution and other can be a dynamic programming based solution. Below is a detailed approach of solving this problem using a digit dynamic programming approach.
Dynamic Programming Solution : Firstly, if we are able to count the required numbers upto R i.e. in the range [0, R], we can easily reach our answer in the range [L, R] by solving for from zero to R and then subtracting the answer we get after solving for from zero to L – 1. Now, we need to define the DP states.
DP States:
- Since we can consider our number as a sequence of digits, one state is the position at which we are currently in. This position can have values from 0 to 18 if we are dealing with the numbers upto 1018. In each recursive call, we try to build the sequence from left to right by placing a digit from 0 to 9.
- Second state is the count which defines the number of non zero digits, we have placed in the number we are trying to build.
- Another state is the boolean variable tight which tells the number we are trying to build has already become smaller than R, so that in the upcoming recursive calls we can place any digit from 0 to 9. If the number has not become smaller, maximum limit of digit we can place is digit at current position in R.
In the final recursive call, when we are at the last position if the count of non zero digits is less than or equal to K, return 1 otherwise return 0.
Below is the implementation of the above approach.
C++
// CPP Program to find the count of // numbers in a range where the number // does not contain more than K non // zero digits #include <bits/stdc++.h> using namespace std; const int M = 20; // states - position, count, tight int dp[M][M][2]; // K is the number of non zero digits int K; // This function returns the count of // required numbers from 0 to num int countInRangeUtil( int pos, int cnt, int tight, vector< int > num) { // Last position if (pos == num.size()) { // If count of non zero digits // is less than or equal to K if (cnt <= K) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][cnt][tight] != -1) return dp[pos][cnt][tight]; int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight ? 9 : num[pos]); for ( int dig = 0; dig <= limit; dig++) { int currCnt = cnt; // If the current digit is nonzero // increment currCnt if (dig != 0) currCnt++; int currTight = tight; // At this position, number becomes // smaller if (dig < num[pos]) currTight = 1; // Next recursive call ans += countInRangeUtil(pos + 1, currCnt, currTight, num); } return dp[pos][cnt][tight] = ans; } // This function converts a number into its // digit vector and uses above function to compute // the answer int countInRange( int x) { vector< int > num; while (x) { num.push_back(x % 10); x /= 10; } reverse(num.begin(), num.end()); // Initialize dp memset (dp, -1, sizeof (dp)); return countInRangeUtil(0, 0, 0, num); } // Driver Code to test above functions int main() { int L = 1, R = 1000; K = 3; cout << countInRange(R) - countInRange(L - 1) << endl; L = 9995, R = 10005, K = 2; cout << countInRange(R) - countInRange(L - 1) << endl; return 0; } |
Java
// Java Program to find the count of // numbers in a range where the number // does not contain more than K non // zero digits import java.util.*; class Solution { static final int M = 20 ; // states - position, count, tight static int dp[][][]= new int [M][M][ 2 ]; // K is the number of non zero digits static int K; static Vector<Integer> num; // This function returns the count of // required numbers from 0 to num static int countInRangeUtil( int pos, int cnt, int tight ) { // Last position if (pos == num.size()) { // If count of non zero digits // is less than or equal to K if (cnt <= K) return 1 ; return 0 ; } // If this result is already computed // simply return it if (dp[pos][cnt][tight] != - 1 ) return dp[pos][cnt][tight]; int ans = 0 ; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight!= 0 ? 9 : num.get(pos)); for ( int dig = 0 ; dig <= limit; dig++) { int currCnt = cnt; // If the current digit is nonzero // increment currCnt if (dig != 0 ) currCnt++; int currTight = tight; // At this position, number becomes // smaller if (dig < num.get(pos)) currTight = 1 ; // Next recursive call ans += countInRangeUtil(pos + 1 , currCnt, currTight); } return dp[pos][cnt][tight] = ans; } // This function converts a number into its // digit vector and uses above function to compute // the answer static int countInRange( int x) { num= new Vector<Integer>(); while (x!= 0 ) { num.add(x % 10 ); x /= 10 ; } Collections.reverse(num); // Initialize dp for ( int i= 0 ;i<M;i++) for ( int j= 0 ;j<M;j++) for ( int k= 0 ;k< 2 ;k++) dp[i][j][k]=- 1 ; return countInRangeUtil( 0 , 0 , 0 ); } // Driver Code to test above functions public static void main(String args[]) { int L = 1 , R = 1000 ; K = 3 ; System.out.println( countInRange(R) - countInRange(L - 1 ) ); L = 9995 ; R = 10005 ; K = 2 ; System.out.println( countInRange(R) - countInRange(L - 1 ) ); } } //contributed by Arnab Kundu |
Python3
# Python Program to find the count of # numbers in a range where the number # does not contain more than K non # zero digits # This function returns the count of # required numbers from 0 to num def countInRangeUtil(pos, cnt, tight, num): # Last position if pos = = len (num): # If count of non zero digits # is less than or equal to K if cnt < = K: return 1 return 0 # If this result is already computed # simply return it if dp[pos][cnt][tight] ! = - 1 : return dp[pos][cnt][tight] ans = 0 # Maximum limit upto which we can place # digit. If tight is 1, means number has # already become smaller so we can place # any digit, otherwise num[pos] limit = 9 if tight else num[pos] for dig in range (limit + 1 ): currCnt = cnt # If the current digit is nonzero # increment currCnt if dig ! = 0 : currCnt + = 1 currTight = tight # At this position, number becomes # smaller if dig < num[pos]: currTight = 1 # Next recursive call ans + = countInRangeUtil(pos + 1 , currCnt, currTight, num) dp[pos][cnt][tight] = ans return dp[pos][cnt][tight] # This function converts a number into its # digit vector and uses above function to compute # the answer def countInRange(x): global dp, K, M num = [] while x: num.append(x % 10 ) x / / = 10 num.reverse() # Initialize dp dp = [[[ - 1 , - 1 ] for i in range (M)] for j in range (M)] return countInRangeUtil( 0 , 0 , 0 , num) # Driver Code if __name__ = = "__main__" : # states - position, count, tight dp = [] M = 20 # K is the number of non zero digits K = 0 L = 1 R = 1000 K = 3 print (countInRange(R) - countInRange(L - 1 )) L = 9995 R = 10005 K = 2 print (countInRange(R) - countInRange(L - 1 )) # This code is contributed by # sanjeev2552 |
C#
// C# Program to find the count of // numbers in a range where the number // does not contain more than K non // zero digits using System; using System.Collections.Generic; class GFG { static int M = 20; // states - position, count, tight static int [,,]dp = new int [M, M, 2]; // K is the number of non zero digits static int K; static List< int > num; // This function returns the count of // required numbers from 0 to num static int countInRangeUtil( int pos, int cnt, int tight ) { // Last position if (pos == num.Count) { // If count of non zero digits // is less than or equal to K if (cnt <= K) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos, cnt, tight] != -1) return dp[pos, cnt, tight]; int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight != 0 ? 9 : num[pos]); for ( int dig = 0; dig <= limit; dig++) { int currCnt = cnt; // If the current digit is nonzero // increment currCnt if (dig != 0) currCnt++; int currTight = tight; // At this position, number becomes // smaller if (dig < num[pos]) currTight = 1; // Next recursive call ans += countInRangeUtil(pos + 1, currCnt, currTight); } return dp[pos,cnt,tight] = ans; } // This function converts a number into its // digit vector and uses above function to compute // the answer static int countInRange( int x) { num = new List< int >(); while (x != 0) { num.Add(x % 10); x /= 10; } num.Reverse(); // Initialize dp for ( int i = 0; i < M; i++) for ( int j = 0; j < M; j++) for ( int k = 0; k < 2; k++) dp[i, j, k] = -1; return countInRangeUtil(0, 0, 0); } // Driver Code public static void Main() { int L = 1, R = 1000; K = 3; Console.WriteLine( countInRange(R) - countInRange(L - 1) ); L = 9995; R = 10005; K = 2; Console.WriteLine( countInRange(R) - countInRange(L - 1) ); } } /* This code contributed by PrinciRaj1992 */ |
Javascript
<script> // Javascript Program to find the count of // numbers in a range where the number // does not contain more than K non // zero digits let M = 20; // states - position, count, tight let dp = new Array(M); for (let i = 0; i < M; i++) { dp[i] = new Array(M); for (let j = 0; j < M; j++) { dp[i][j] = new Array(2); for (let k = 0; k < 2; k++) dp[i][j][k] = 0; } } // K is the number of non zero digits let K; let num; // This function returns the count of // required numbers from 0 to num function countInRangeUtil(pos, cnt, tight ) { // Last position if (pos == num.length) { // If count of non zero digits // is less than or equal to K if (cnt <= K) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][cnt][tight] != -1) return dp[pos][cnt][tight]; let ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] let limit = (tight!=0 ? 9 : num[pos]); for (let dig = 0; dig <= limit; dig++) { let currCnt = cnt; // If the current digit is nonzero // increment currCnt if (dig != 0) currCnt++; let currTight = tight; // At this position, number becomes // smaller if (dig < num[pos]) currTight = 1; // Next recursive call ans += countInRangeUtil(pos + 1, currCnt, currTight); } return dp[pos][cnt][tight] = ans; } // This function converts a number into its // digit vector and uses above function to compute // the answer function countInRange(x) { num= []; while (x!=0) { num.push(x % 10); x = Math.floor(x/10); } num.reverse(); // Initialize dp for (let i=0;i<M;i++) for (let j=0;j<M;j++) for (let k=0;k<2;k++) dp[i][j][k]=-1; return countInRangeUtil(0, 0, 0); } // Driver Code to test above functions let L = 1, R = 1000; K = 3; document.write( (countInRange(R) - countInRange(L - 1)) + "<br>" ); L = 9995; R = 10005; K = 2; document.write( (countInRange(R) - countInRange(L - 1)) + "<br>" ); // This code is contributed by avanitrachhadiya2155 </script> |
1000 6
Time Complexity : O(M * M * 2 * 10) where M = log(MAX), here MAX is the maximum number.
Auxiliary Space: O(M*M)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!