Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of numbers in range which can be represented as sum...

Count of numbers in range [L, R] which can be represented as sum of two perfect powers

Given a range [L, R], the task is to find the count of numbers in the range [L, R] that can be expressed as a sum of two perfect powers.

Examples:

Input: L = 0, R = 1
Output: 2
Explanation:
The valid numbers are:

  1. 1 as it can be expressed as, 1 = 12 + 02.
  2. 0 as it can be expressed as, 0 = 02 + 02.

Therefore, the count of such numbers is 2.

Input: L = 5, R = 8
Output: 2
Explanation:
The valid numbers are:

  1. 5 as it can be expressed as, 5 = 12 + 22.
  2. 8 as it can be expressed as, 0 = 02 + 23.

Therefore, the count of such numbers is 2.

Approach: The given problem can be solved by using some mathematical observations. Follow the steps below to solve the problem:

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of numbers
// that can be expressed in the form of
// the sum of two perfect powers
int TotalPerfectPowerSum(long long L,
                         long long R)
{
    // Stores all possible powers
    vector<long long> pows;
 
    // Push 1 and 0 in it
    pows.push_back(0);
    pows.push_back(1);
 
    // Iterate over all the exponents
    for (int p = 2; p < 25; p++) {
 
        // Iterate over all possible numbers
        long long int num = 2;
 
        // This loop will run for a
        // maximum of sqrt(R) times
        while ((long long int)(pow(num, p) + 0.5) <= R) {
 
            // Push this power in
            // the array pows[]
            pows.push_back(
                (long long int)(pow(num, p) + 0.5));
 
            // Increase the number
            num++;
        }
    }
 
    // Stores if i can be expressed as
    // the sum of perfect power or not
    int ok[R + 1];
    memset(ok, 0, sizeof(ok));
 
    // Iterate over all possible pairs
    // of the array pows[]
    for (int i = 0;
         i < pows.size(); i++) {
 
        for (int j = 0;
             j < pows.size(); j++) {
 
            if (pows[i] + pows[j] <= R
                and pows[i] + pows[j] >= L) {
 
                // The number is valid
                ok[pows[i] + pows[j]] = 1;
            }
        }
    }
 
    // Find the prefix sum of the
    // array ok[]
    for (int i = 0; i <= R; i++) {
        ok[i] += ok[i - 1];
    }
 
    // Return the count of required number
    return ok[R] - ok[L - 1];
}
 
// Driver Code
signed main()
{
    int L = 5, R = 8;
    cout << TotalPerfectPowerSum(L, R);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
    // Function to find the number of numbers
    // that can be expressed in the form of
    // the sum of two perfect powers
    static int TotalPerfectPowerSum(int L, int R)
    {
        // Stores all possible powers
        ArrayList<Integer> pows = new ArrayList<Integer>();
 
        // Push 1 and 0 in it
        pows.add(0);
        pows.add(1);
 
        // Iterate over all the exponents
        for (int p = 2; p < 25; p++) {
 
            // Iterate over all possible numbers
            int num = 2;
 
            // This loop will run for a
            // maximum of sqrt(R) times
            while ((int)(Math.pow(num, p) + 0.5) <= R) {
 
                // Push this power in
                // the array pows[]
                pows.add((int)(Math.pow(num, p) + 0.5));
 
                // Increase the number
                num++;
            }
        }
 
        // Stores if i can be expressed as
        // the sum of perfect power or not
        int[] ok = new int[R + 2];
        // memset(ok, 0, sizeof(ok));
 
        // Iterate over all possible pairs
        // of the array pows[]
        for (int i = 0; i < pows.size(); i++) {
 
            for (int j = 0; j < pows.size(); j++) {
 
                if (pows.get(i) + pows.get(j) <= R
                    && pows.get(i) + pows.get(j) >= L) {
 
                    // The number is valid
                    ok[pows.get(i) + pows.get(j)] = 1;
                }
            }
        }
 
        // Find the prefix sum of the
        // array ok[]
        for (int i = 1; i <= R; i++) {
            ok[i] += ok[i - 1];
        }
 
        // Return the count of required number
        return ok[R] - ok[L - 1];
    }
   
    // Driver Code
    public static void main(String args[])
    {
 
        int L = 5, R = 8;
        System.out.print(TotalPerfectPowerSum(L, R));
    }
}
 
// This code is contributed by avijitmondal1998.


Python3




# python program for the above approach
 
# Function to find the number of numbers
# that can be expressed in the form of
# the sum of two perfect powers
def TotalPerfectPowerSum(L, R):
   
    # Stores all possible powers
    pows = []
 
    # Push 1 and 0 in it
    pows.append(0)
    pows.append(1)
 
    # Iterate over all the exponents
    for p in range(2, 25):
 
                # Iterate over all possible numbers
        num = 2
 
        # This loop will run for a
        # maximum of sqrt(R) times
        while ((int)(pow(num, p) + 0.5) <= R):
 
                        # Push this power in
                        # the array pows[]
            pows.append((int)(pow(num, p) + 0.5))
 
            # Increase the number
            num = num + 1
 
        # Stores if i can be expressed as
        # the sum of perfect power or not
    ok = [0 for _ in range(R + 1)]
     
    # int ok[R + 1];
    # memset(ok, 0, sizeof(ok));
    # Iterate over all possible pairs
    # of the array pows[]
    for i in range(0, int(len(pows))):
        for j in range(0, len(pows)):
            if (pows[i] + pows[j] <= R and pows[i] + pows[j] >= L):
 
                                # The number is valid
                ok[pows[i] + pows[j]] = 1
 
        # Find the prefix sum of the
        # array ok[]
    for i in range(0, R+1):
        ok[i] += ok[i - 1]
 
        # Return the count of required number
    return ok[R] - ok[L - 1]
 
# Driver Code
if __name__ == "__main__":
    L = 5
    R = 8
    print(TotalPerfectPowerSum(L, R))
     
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
 
    // Function to find the number of numbers
    // that can be expressed in the form of
    // the sum of two perfect powers
    static int TotalPerfectPowerSum(long L, long R)
    {
        // Stores all possible powers
        List<long> pows = new List<long>();
 
        // Push 1 and 0 in it
        pows.Add(0);
        pows.Add(1);
 
        // Iterate over all the exponents
        for (int p = 2; p < 25; p++) {
 
            // Iterate over all possible numbers
            long num = 2;
 
            // This loop will run for a
            // maximum of sqrt(R) times
            while ((long)(Math.Pow(num, p) + 0.5) <= R) {
 
                // Push this power in
                // the array pows[]
                pows.Add((long)(Math.Pow(num, p) + 0.5));
 
                // Increase the number
                num++;
            }
        }
 
        // Stores if i can be expressed as
        // the sum of perfect power or not
        int[] ok = new int[R + 2];
        // memset(ok, 0, sizeof(ok));
 
        // Iterate over all possible pairs
        // of the array pows[]
        for (int i = 0; i < pows.Count; i++) {
 
            for (int j = 0; j < pows.Count; j++) {
 
                if (pows[i] + pows[j] <= R
                    && pows[i] + pows[j] >= L) {
 
                    // The number is valid
                    ok[pows[i] + pows[j]] = 1;
                }
            }
        }
 
        // Find the prefix sum of the
        // array ok[]
        for (int i = 1; i <= R; i++) {
            ok[i] += ok[i - 1];
        }
 
        // Return the count of required number
        return ok[R] - ok[L - 1];
    }
 
    // Driver Code
    public static void Main()
    {
        int L = 5, R = 8;
        Console.WriteLine(TotalPerfectPowerSum(L, R));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
       // JavaScript Program to implement
       // the above approach
 
       // Function to find the number of numbers
       // that can be expressed in the form of
       // the sum of two perfect powers
       function TotalPerfectPowerSum(L,
           R)
       {
        
           // Stores all possible powers
           let pows = [];
 
           // Push 1 and 0 in it
           pows.push(0);
           pows.push(1);
 
           // Iterate over all the exponents
           for (let p = 2; p < 25; p++) {
 
               // Iterate over all possible numbers
               let num = 2;
 
               // This loop will run for a
               // maximum of sqrt(R) times
               while (Math.floor(Math.pow(num, p) + 0.5) <= R) {
 
                   // Push this power in
                   // the array pows[]
                   pows.push(
                       Math.floor(Math.pow(num, p) + 0.5));
 
                   // Increase the number
                   num++;
               }
           }
 
           // Stores if i can be expressed as
           // the sum of perfect power or not
 
           let ok = new Array(R + 1).fill(0);
 
 
           // Iterate over all possible pairs
           // of the array pows[]
           for (let i = 0;
               i < pows.length; i++) {
 
               for (let j = 0;
                   j < pows.length; j++) {
 
                   if (pows[i] + pows[j] <= R
                       && pows[i] + pows[j] >= L) {
 
                       // The number is valid
                       ok[pows[i] + pows[j]] = 1;
                   }
               }
           }
 
           // Find the prefix sum of the
           // array ok[]
           for (let i = 1; i <= R; i++) {
               ok[i] += ok[i - 1];
 
           }
 
           // Return the count of required number
           return ok[R] - ok[L - 1];
       }
 
       // Driver Code
       let L = 5, R = 8;
       document.write(TotalPerfectPowerSum(L, R));
 
    // This code is contributed by Potta Lokesh
   </script>


Output: 

2

 

Time Complexity: O(R*log(R))
Auxiliary Space: O(R)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments