Friday, January 3, 2025
Google search engine
HomeData Modelling & AICount of numbers from range that end with any of the...

Count of numbers from range [L, R] that end with any of the given digits

Given a range [L, R], the task is to find the count of numbers from the range whose last digit is either 2, 3 or 9.
Examples: 
 

Input: L = 1, R = 3 
Output:
2 and 3 are the only valid numbers.
Input: L = 11, R = 33 
Output:
 

 

Approach: Initialize a counter count = 0 and run a loop for every element from the range, if the current element ends with any of the given digits then increment the count.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the count
// of the required numbers
int countNums(int l, int r)
{
    int cnt = 0;
 
    for (int i = l; i <= r; i++)
    {
 
        // Last digit of the current number
        int lastDigit = (i % 10);
 
        // If the last digit is equal to
        // any of the given digits
        if ((lastDigit % 10) == 2 || (lastDigit % 10) == 3
            || (lastDigit % 10) == 9)
        {
            cnt++;
        }
    }
 
    return cnt;
}
 
// Driver code
int main()
{
    int l = 11, r = 33;
    cout << countNums(l, r) ;
}
     
// This code is contributed by AnkitRai01


Java




// Java implementation of the approach
class GFG {
 
    // Function to return the count
    // of the required numbers
    static int countNums(int l, int r)
    {
        int cnt = 0;
 
        for (int i = l; i <= r; i++) {
 
            // Last digit of the current number
            int lastDigit = (i % 10);
 
            // If the last digit is equal to
            // any of the given digits
            if ((lastDigit % 10) == 2 || (lastDigit % 10) == 3
                || (lastDigit % 10) == 9) {
                cnt++;
            }
        }
 
        return cnt;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int l = 11, r = 33;
        System.out.print(countNums(l, r));
    }
}


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of the required numbers
def countNums(l, r) :
    cnt = 0;
 
    for i in range(l, r + 1) :
 
        # Last digit of the current number
        lastDigit = (i % 10);
 
        # If the last digit is equal to
        # any of the given digits
        if ((lastDigit % 10) == 2 or (lastDigit % 10) == 3
            or (lastDigit % 10) == 9) :
         
            cnt += 1;
 
    return cnt;
 
# Driver code
if __name__ == "__main__" :
     
    l = 11; r = 33;
     
    print(countNums(l, r)) ;
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return the count
    // of the required numbers
    static int countNums(int l, int r)
    {
        int cnt = 0;
 
        for (int i = l; i <= r; i++)
        {
 
            // Last digit of the current number
            int lastDigit = (i % 10);
 
            // If the last digit is equal to
            // any of the given digits
            if ((lastDigit % 10) == 2 ||
                (lastDigit % 10) == 3 ||
                (lastDigit % 10) == 9)
            {
                cnt++;
            }
        }
        return cnt;
    }
 
    // Driver code
    public static void Main()
    {
        int l = 11, r = 33;
        Console.Write(countNums(l, r));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
    // JavaScript implementation of the approach
     
    // Function to return the count
    // of the required numbers
    function countNums(l, r)
    {
        let cnt = 0;
   
        for (let i = l; i <= r; i++) {
   
            // Last digit of the current number
            let lastDigit = (i % 10);
   
            // If the last digit is equal to
            // any of the given digits
            if ((lastDigit % 10) == 2 || (lastDigit % 10) == 3
                || (lastDigit % 10) == 9) {
                cnt++;
            }
        }
   
        return cnt;
    }
     
    let l = 11, r = 33;
      document.write(countNums(l, r));
     
</script>


Output: 

8

 

Time Complexity: O(r)

Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments