Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of numbers between range having only non-zero digits whose sum of...

Count of numbers between range having only non-zero digits whose sum of digits is N and number is divisible by M

Given a range [L, R] and two positive integers N and M. The task is to count the numbers in the range containing only non-zero digits whose sum of digits is equal to N and the number is divisible by M.
Examples:

Input: L = 1, R = 100, N = 8, M = 2 
Output:
Only 8, 26, 44 and 62 are valid numbers 

Input: L = 1, R = 200, N = 4, M = 11 
Output:
Only 22 and 121 are valid numbers 

Prerequisites : Digit DP

Approach: Firstly, if we are able to count the required numbers up to R i.e. in the range [0, R], we can easily reach our answer in the range [L, R] by solving for from zero to R and then subtracting the answer we get after solving for from zero to L – 1. Now, we need to define the DP states. 
DP States

  • Since we can consider our number as a sequence of digits, one state is the position at which we are currently in. This position can have values from 0 to 18 if we are dealing with numbers up to 1018. In each recursive call, we try to build the sequence from left to right by placing a digit from 0 to 9.
  • Second state is the sum of the digits we have placed so far.
  • Third state is the remainder which defines the modulus of the number we have made so far modulo M.
  • Another state is the boolean variable tight which tells the number we are trying to build has already become smaller than R so that in the upcoming recursive calls we can place any digit from 0 to 9. If the number has not become smaller, the maximum limit of digit we can place is digit at the current position in R.

For the number to have only non-zero digits, we maintain a variable nonz whose value if 1 tells the first digit in the number we have placed is a non-zero digit and thus, now we can’t place any zero digit in upcoming calls. Otherwise, we can place a zero digit as a leading zero so as to make number of digits in current number smaller than number of digits in upper limit.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int M = 20;
 
// states - position, sum, rem, tight
// sum can have values upto 162, if we
// are dealing with numbers upto 10^18
// when all 18 digits are 9, then sum
// is 18 * 9 = 162
int dp[M][165][M][2];
 
// n is the sum of digits and number should
// be divisible by m
int n, m;
 
// Function to return the count of
// required numbers from 0 to num
int count(int pos, int sum, int rem, int tight,
          int nonz, vector<int> num)
{
    // Last position
    if (pos == num.size()) {
        if (rem == 0 && sum == n)
            return 1;
        return 0;
    }
 
    // If this result is already computed
    // simply return it
    if (dp[pos][sum][rem][tight] != -1)
        return dp[pos][sum][rem][tight];
 
    int ans = 0;
 
    // Maximum limit upto which we can place
    // digit. If tight is 1, means number has
    // already become smaller so we can place
    // any digit, otherwise num[pos]
    int limit = (tight ? 9 : num[pos]);
 
    for (int d = 0; d <= limit; d++) {
 
        // If the current digit is zero
        // and nonz is 1, we can't place it
        if (d == 0 && nonz)
            continue;
        int currSum = sum + d;
        int currRem = (rem * 10 + d) % m;
        int currF = tight || (d < num[pos]);
        ans += count(pos + 1, currSum, currRem,
                     currF, nonz || d, num);
    }
    return dp[pos][sum][rem][tight] = ans;
}
 
// Function to convert x into its digit vector
// and uses count() function to return the
// required count
int solve(int x)
{
    vector<int> num;
    while (x) {
        num.push_back(x % 10);
        x /= 10;
    }
    reverse(num.begin(), num.end());
 
    // Initialize dp
    memset(dp, -1, sizeof(dp));
    return count(0, 0, 0, 0, 0, num);
}
 
// Driver code
int main()
{
    int L = 1, R = 100;
    n = 8, m = 2;
    cout << solve(R) - solve(L);
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
static int M = 20;
 
// states - position, sum, rem, tight
// sum can have values upto 162, if we
// are dealing with numbers upto 10^18
// when all 18 digits are 9, then sum
// is 18 * 9 = 162
static int dp[][][][] = new int [M][165][M][2];
 
// n is the sum of digits and number should
// be divisible by m
static int n, m;
 
// Function to return the count of
// required numbers from 0 to num
static int count(int pos, int sum, int rem, int tight,
        int nonz, Vector<Integer> num)
{
    // Last position
    if (pos == num.size())
    {
        if (rem == 0 && sum == n)
            return 1;
        return 0;
    }
 
    // If this result is already computed
    // simply return it
    if (dp[pos][sum][rem][tight] != -1)
        return dp[pos][sum][rem][tight];
 
    int ans = 0;
 
    // Maximum limit upto which we can place
    // digit. If tight is 1, means number has
    // already become smaller so we can place
    // any digit, otherwise num[pos]
    int limit = (tight != 0 ? 9 : num.get(pos));
 
    for (int d = 0; d <= limit; d++)
    {
 
        // If the current digit is zero
        // and nonz is 1, we can't place it
        if (d == 0 && nonz != 0)
            continue;
        int currSum = sum + d;
        int currRem = (rem * 10 + d) % m;
        int currF = (tight != 0 || (d < num.get(pos))) ? 1 : 0;
        ans += count(pos + 1, currSum, currRem,
                    currF, (nonz != 0 || d != 0) ? 1 : 0, num);
    }
    return dp[pos][sum][rem][tight] = ans;
}
 
// Function to convert x into its digit vector
// and uses count() function to return the
// required count
static int solve(int x)
{
    Vector<Integer> num = new Vector<Integer>();
    while (x != 0)
    {
        num.add(x % 10);
        x /= 10;
    }
    Collections.reverse(num);
 
    // Initialize dp
    for(int i = 0; i < M; i++)
        for(int j = 0; j < 165; j++)
            for(int k = 0; k < M; k++)
                for(int l = 0; l < 2; l++)
                    dp[i][j][k][l]=-1;
     
    return count(0, 0, 0, 0, 0, num);
}
 
// Driver code
public static void main(String args[])
{
    int L = 1, R = 100;
    n = 8; m = 2;
    System.out.print( solve(R) - solve(L));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
 
# Function to return the count of
# required numbers from 0 to num
def count(pos, Sum, rem, tight, nonz, num):
 
    # Last position
    if pos == len(num):
        if rem == 0 and Sum == n:
            return 1
        return 0
 
    # If this result is already computed
    # simply return it
    if dp[pos][Sum][rem][tight] != -1:
        return dp[pos][Sum][rem][tight]
     
    ans = 0
 
    # Maximum limit upto which we can place
    # digit. If tight is 1, means number has
    # already become smaller so we can place
    # any digit, otherwise num[pos]
    if tight:
        limit = 9
    else:
        limit = num[pos]
     
    for d in range(0, limit + 1):
 
        # If the current digit is zero
        # and nonz is 1, we can't place it
        if d == 0 and nonz:
            continue
             
        currSum = Sum + d
        currRem = (rem * 10 + d) % m
        currF = int(tight or (d < num[pos]))
        ans += count(pos + 1, currSum, currRem,
                     currF, nonz or d, num)
     
    dp[pos][Sum][rem][tight] = ans
    return ans
 
# Function to convert x into its digit
# vector and uses count() function to
# return the required count
def solve(x):
 
    num = []
    global dp
     
    while x > 0:
        num.append(x % 10)
        x //= 10
     
    num.reverse()
 
    # Initialize dp
    dp = [[[[-1, -1] for i in range(M)]
                     for j in range(165)]
                     for k in range(M)]
    return count(0, 0, 0, 0, 0, num)
 
# Driver code
if __name__ == "__main__":
 
    L, R = 1, 100
     
    # n is the sum of digits and number
    # should be divisible by m
    n, m, M = 8, 2, 20
     
    # States - position, sum, rem, tight
    # sum can have values upto 162, if we
    # are dealing with numbers upto 10^18
    # when all 18 digits are 9, then sum
    # is 18 * 9 = 162
    dp = []
 
    print(solve(R) - solve(L))
     
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
     
static int M = 20;
 
// states - position, sum, rem, tight
// sum can have values upto 162, if we
// are dealing with numbers upto 10^18
// when all 18 digits are 9, then sum
// is 18 * 9 = 162
static int [,,,]dp = new int [M, 165, M, 2];
 
// n is the sum of digits and number should
// be divisible by m
static int n, m;
 
// Function to return the count of
// required numbers from 0 to num
static int count(int pos, int sum, int rem, int tight,
                            int nonz, List<int> num)
{
    // Last position
    if (pos == num.Count)
    {
        if (rem == 0 && sum == n)
            return 1;
        return 0;
    }
 
    // If this result is already computed
    // simply return it
    if (dp[pos,sum,rem,tight] != -1)
        return dp[pos,sum,rem,tight];
 
    int ans = 0;
 
    // Maximum limit upto which we can place
    // digit. If tight is 1, means number has
    // already become smaller so we can place
    // any digit, otherwise num[pos]
    int limit = (tight != 0 ? 9 : num[pos]);
 
    for (int d = 0; d <= limit; d++)
    {
 
        // If the current digit is zero
        // and nonz is 1, we can't place it
        if (d == 0 && nonz != 0)
            continue;
        int currSum = sum + d;
        int currRem = (rem * 10 + d) % m;
        int currF = (tight != 0 || (d < num[pos])) ? 1 : 0;
        ans += count(pos + 1, currSum, currRem,
                    currF, (nonz != 0 || d != 0) ? 1 : 0, num);
    }
    return dp[pos, sum, rem, tight] = ans;
}
 
// Function to convert x into its digit vector
// and uses count() function to return the
// required count
static int solve(int x)
{
    List<int> num = new List<int>();
    while (x != 0)
    {
        num.Add(x % 10);
        x /= 10;
    }
    num.Reverse();
 
    // Initialize dp
    for(int i = 0; i < M; i++)
        for(int j = 0; j < 165; j++)
            for(int k = 0; k < M; k++)
                for(int l = 0; l < 2; l++)
                    dp[i, j, k, l] = -1;
     
    return count(0, 0, 0, 0, 0, num);
}
 
// Driver code
public static void Main(String []args)
{
    int L = 1, R = 100;
    n = 8; m = 2;
    Console.Write( solve(R) - solve(L));
}
}
 
// This code has been contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript implementation of the approach
 
var M = 20;
 
// states - position, sum, rem, tight
// sum can have values upto 162, if we
// are dealing with numbers upto 10^18
// when all 18 digits are 9, then sum
// is 18 * 9 = 162
var dp = Array.from(Array(M), ()=>Array(165));
 
// n is the sum of digits and number should
// be divisible by m
var n, m;
 
// Function to return the count of
// required numbers from 0 to num
function count( pos, sum, rem, tight, nonz, num)
{
    // Last position
    if (pos == num.length) {
        if (rem == 0 && sum == n)
            return 1;
        return 0;
    }
    // If this result is already computed
    // simply return it
    if (dp[pos][sum][rem][tight] != -1)
        return dp[pos][sum][rem][tight];
 
    var ans = 0;
 
    // Maximum limit upto which we can place
    // digit. If tight is 1, means number has
    // already become smaller so we can place
    // any digit, otherwise num[pos]
    var limit = (tight ? 9 : num[pos]);
 
    for (var d = 0; d <= limit; d++) {
 
        // If the current digit is zero
        // and nonz is 1, we can't place it
        if (d == 0 && nonz)
            continue;
        var currSum = sum + d;
        var currRem = (rem * 10 + d) % m;
        var currF = (tight != 0 || (d < num[pos])) ? 1 : 0;
        ans += count(pos + 1, currSum, currRem,
                    currF, (nonz != 0 || d != 0) ? 1 : 0, num);
    }
    dp[pos][sum][rem][tight] = ans;
    return ans;
}
 
// Function to convert x into its digit vector
// and uses count() function to return the
// required count
function solve(x)
{
    var num = [];
    while (x) {
        num.push(x % 10);
        x = parseInt(x/10);
    }
    num.reverse();
 
    // Initialize dp
    for(var i =0; i<M; i++)
        for(var j =0; j<165; j++)
            dp[i][j] = Array.from(Array(M), ()=>Array(2).fill(-1));
    return count(0, 0, 0, 0, 0, num);
}
 
// Driver code
var L = 1, R = 100;
n = 8, m = 2;
document.write( solve(R) - solve(L));
 
</script>


Output: 

4

 

Time Complexity: O(M*M)
Auxiliary Space: O(M*M)

Short Implementation : 

C++




#include <iostream>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
 
int main()
{
    int l = 1, r = 100, n = 8, m = 2;
    std::vector<int> output;
 
    for (int x = l; x <= r; x++) {
        int sum = 0;
        std::string str = std::to_string(x);
        for (char c : str) {
            sum += c - '0';
        }
        if (sum == n && x % m == 0
            && str.find("0") == std::string::npos) {
            output.push_back(x);
        }
    }
 
    std::cout << output.size() << std::endl;
    return 0;
} // this code is contributed by dany


Python3




# User Input
l, r, n, m = 1, 100, 8, 2
 
# Initialize Result
output = []
 
# Traverse through all numbers
for x in range(l, r+1):
 
    # Check for all conditions in every number
    if sum([int(k) for k in str(x)]) == n and x % m == 0 and '0' not in str(x): # Check conditions
        output.append(x)
  
print(len(output)) 
  
# This code is contributed by mailprakashindia


Java




import java.util.ArrayList;
import java.util.List;
 
public class Main {
    public static void main(String[] args) {
        int l = 1, r = 100, n = 8, m = 2;
 
        List<Integer> output = new ArrayList<>();
 
        // Traverse through all numbers
        for (int x = l; x <= r; x++) {
 
            // Check for all conditions in every number
            if (String.valueOf(x).chars().map(Character::getNumericValue).sum() == n && x % m == 0 && !String.valueOf(x).contains("0")) {
                output.add(x);
            }
        }
 
        System.out.println(output.size());
    }
}
// this code is contributed by devendrasalunke


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class MainClass {
    public static void Main (string[] args) {
        int l = 1, r = 100, n = 8, m = 2;
 
        List<int> output = new List<int>();
 
        // Traverse through all numbers
        for (int x = l; x <= r; x++) {
 
            // Check for all conditions in every number
            if (x.ToString().ToCharArray().Select(c => (int)Char.GetNumericValue(c)).Sum() == n && x % m == 0 && !x.ToString().Contains("0")) {
                output.Add(x);
            }
        }
 
        Console.WriteLine(output.Count);
    }
}


Javascript




// User Input
let l = 1, r = 100, n = 8, m = 2;
 
// Initialize Result
let output = [];
 
// Traverse through all numbers
for (let x = l; x <= r; x++) {
 
    // Check for all conditions in every number
    if (x.toString().split('').map(Number).reduce((a,b) => a + b) === n && x % m === 0 && !x.toString().includes('0')) { // Check conditions
        output.push(x);
    }
}
 
console.log(output.length);


Output

4

Time complexity of this solution would be O(n * k), where n is the number of elements in the given range (r-l) and k = no. of digit required to represent a number in decimal format. We traverse through all the elements in the given range so O(n) and for checking all the conditions we need O(k) for every possible value, as here we are using stl find() function which need O(k) time.
Auxiliary Space complexity of this solution would be O(1). We do not use any extra space for this solution.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments