Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount of N-digit numbers with all distinct digits

Count of N-digit numbers with all distinct digits

Given an integer N, the task is to find the count of N-digit numbers with all distinct digits.
Examples: 
 

Input: N = 1 
Output:
1, 2, 3, 4, 5, 6, 7, 8 and 9 are the 1-digit numbers 
with all distinct digits.
Input: N = 3 
Output: 648 
 

Naive Approach: If N > 10 i.e. there will be atleast one digit which will be repeating hence for such cases the answer will be 0 else for the values of N = 1, 2, 3, …, 9, a series will be formed as 9, 81, 648, 4536, 27216, 136080, 544320, … whose Nth term will be 9 * 9! / (10 – N)!.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the factorial of n
int factorial(int n)
{
    if (n == 0)
        return 1;
    return n * factorial(n - 1);
}
 
// Function to return the count
// of n-digit numbers with
// all distinct digits
int countNum(int n)
{
    if (n > 10)
        return 0;
    return (9 * factorial(9)
            / factorial(10 - n));
}
 
// Driver code
int main()
{
    int n = 3;
 
    cout << countNum(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the factorial of n
    static int factorial(int n)
    {
        if (n == 0)
            return 1;
        return n * factorial(n - 1);
    }
     
    // Function to return the count
    // of n-digit numbers with
    // all distinct digits
    static int countNum(int n)
    {
        if (n > 10)
            return 0;
        return (9 * factorial(9) /
                    factorial(10 - n));
    }
     
    // Driver code
    public static void main(String []args)
    {
        int n = 3;
        System.out.println(countNum(n));
    }
}
 
// This code is contributed by Srathore


Python3




# Python3 implementation of the approach
 
# Function to return the factorial of n
def factorial(n) :
 
    if (n == 0) :
        return 1;
    return n * factorial(n - 1);
 
# Function to return the count
# of n-digit numbers with
# all distinct digits
def countNum(n) :
    if (n > 10) :
        return 0;
         
    return (9 * factorial(9) //
                factorial(10 - n));
 
# Driver code
if __name__ == "__main__" :
 
    n = 3;
 
    print(countNum(n));
     
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
                     
class GFG
{
     
    // Function to return the factorial of n
    static int factorial(int n)
    {
        if (n == 0)
            return 1;
        return n * factorial(n - 1);
    }
     
    // Function to return the count
    // of n-digit numbers with
    // all distinct digits
    static int countNum(int n)
    {
        if (n > 10)
            return 0;
        return (9 * factorial(9) /
                    factorial(10 - n));
    }
     
    // Driver code
    public static void Main(String []args)
    {
        int n = 3;
        Console.WriteLine(countNum(n));
    }
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
 
// Javascript implementation of the approach
 
// Function to return the factorial of n
function factorial(n)
{
    if (n == 0)
        return 1;
    return n * factorial(n - 1);
}
 
// Function to return the count
// of n-digit numbers with
// all distinct digits
function countNum(n)
{
    if (n > 10)
        return 0;
    return (9 * factorial(9)
            / factorial(10 - n));
}
 
// Driver code
var n = 3;
document.write(countNum(n));
 
// This code is contributed by rutvik_56.
</script>


Output

648

Time Complexity: O(n)

Auxiliary Space: O(n)

Efficient Approach:  We have to fill (n) places with different digit. Like we n=2 then (_ _) places to fill. first place we fill (1 to 9) any number. let we fill 9 in first place then in second place we have choice (0 to 8). So for first place we 9 choices because we can not fill 0 at first place and after that for 2nd place we 9 choice and for 3rd place we 8 choice then so on… 

let we take 4 digit no so ( 9choice      9 choice      8  choice       7choice) .

Choices->

first place -9

second place-9

third place -8

fourth place -7

and so on…….

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of n-digit numbers with
// all distinct digits
long long countNum(int n)
{
    if (n > 10)
        return 0;
 
    long long count = 1; // Store the count
    long long j = 9; // take choice
 
    /* take loop 1 to n and multiply with choice*/
    for (int i = 1; i <= n; i++) {
 
        if (i == 1) {
 
            count = count * j;
            continue;
        }
        else {
            count = count * j;
            j--;
        }
    }
  return count;
}
 
// Driver code
int main()
{
    int n = 3;
 
    cout << countNum(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG {
 
    // Function to return the count
    // of n-digit numbers with
    // all distinct digits
    static long countNum(int n)
    {
        if (n > 10)
            return 0;
        long count = 1; // Store the count
        long j = 9; // take choice
 
        /* take loop 1 to n and multiply with choice*/
        for (int i = 1; i <= n; i++) {
 
            if (i == 1) {
 
                count = count * j;
                continue;
            }
            else {
                count = count * j;
                j--;
            }
        }
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 3;
        System.out.println(countNum(n));
    }
}
 
// This code is contributed by Srathore


Python3




# Python implementation of the approach
 
# Function to return the count
# of n-digit numbers with
# all distinct digits
def countNum(n):
    if n > 10:
        return 0
    count = 1  # Store the count
    j = 9  # take choice
 
    # take loop 1 to n and multiply with choice
    for i in range(1, n+1):
        if i == 1:
            count = count * j
            continue
        else:
            count = count * j
            j -= 1
    return count
 
 
# Driver code
n = 3
print(countNum(n))
 
# This code is contributed by rutikbhosale


C#




using System;
 
class GFG
{
 
  // Function to return the count
  // of n-digit numbers with
  // all distinct digits
  static long countNum(int n)
  {
    if (n > 10)
      return 0;
    long count = 1; // Store the count
    long j = 9; // take choice
 
    /* take loop 1 to n and multiply with choice*/
    for (int i = 1; i <= n; i++)
    {
 
      if (i == 1)
      {
 
        count = count * j;
        continue;
      }
      else
      {
        count = count * j;
        j--;
      }
    }
    return count;
  }
 
  // Driver code
  static void Main(string[] args)
  {
    int n = 3;
    Console.WriteLine(countNum(n));
  }
}


Javascript




// Javascript implementation of the approach
 
// Function to return the count
// of n-digit numbers with
// all distinct digits
function countNum(n) {
  if (n > 10)
    return 0;
 
  let count = 1; // Store the count
  let j = 9; // take choice
 
  /* take loop 1 to n and multiply with choice*/
  for (let i = 1; i <= n; i++) {
    if (i === 1) {
      count *= j;
      continue;
    } else {
      count *= j;
      j--;
    }
  }
  return count;
}
 
// Driver code
const n = 3;
console.log(countNum(n));


Output

648

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments