Given an integer N, the task is to find the total count of N digit numbers such that no two consecutive digits are equal.
Examples:
Input: N = 2
Output: 81
Explanation:
Count possible 2-digit numbers, i.e. the numbers in the range [10, 99] = 90
All 2-digit numbers having equal consecutive digits are {11, 22, 33, 44, 55, 66, 77, 88, 99}.
Therefore, the required count = 90 – 9 = 81Input: N = 1
Output: 10
Naive Approach: The simplest approach to solve the problem is to iterate over all possible N-digit numbers and check for every number if any two consecutive digits are equal or not.
Below is the implementation of the above approach:
C++
// C++ program to implement// the above approach#include<bits/stdc++.h>using namespace std;// Function to count the number// of N-digit numbers with no// equal pair of consecutive digitsvoid count(int N){ // Base Case if (N == 1) { cout << 10 << endl; return; } // Lowest N-digit number int l = pow(10, N - 1); // Highest N-digit number int r = pow(10, N) - 1; // Stores the count of all // required numbers int ans = 0; // Iterate over all N-digit numbers for(int i = l; i <= r; i++) { string s = to_string(i); int flag = 0; // Iterate over all digits for(int j = 1; j < N; j++) { // Check for equal pair of // adjacent digits if (s[j] == s[j - 1]) { flag = 1; break; } } if (flag == 0) ans++; } cout << ans << endl;}// Driver Codeint main(){ int N = 2; count(N); return 0;}// This code is contributed by rutvik_56 |
Java
// Java Program to implement// the above approachimport java.util.*;class GFG { // Function to count the number // of N-digit numbers with no // equal pair of consecutive digits public static void count(int N) { // Base Case if (N == 1) { System.out.println(10); return; } // Lowest N-digit number int l = (int)Math.pow(10, N - 1); // Highest N-digit number int r = (int)Math.pow(10, N) - 1; // Stores the count of all // required numbers int ans = 0; // Iterate over all N-digit numbers for (int i = l; i <= r; i++) { String s = Integer.toString(i); int flag = 0; // Iterate over all digits for (int j = 1; j < N; j++) { // Check for equal pair of // adjacent digits if (s.charAt(j) == s.charAt(j - 1)) { flag = 1; break; } } if (flag == 0) ans++; } System.out.println(ans); } // Driver Code public static void main(String[] args) { int N = 2; count(N); }} |
Python3
# Python3 Program to implement# the above approach# Function to count the number# of N-digit numbers with no# equal pair of consecutive digitsdef count(N): # Base Case if (N == 1): print(10); return; # Lowest N-digit number l = int(pow(10, N - 1)); # Highest N-digit number r = int(pow(10, N) - 1); # Stores the count of all # required numbers ans = 0; # Iterate over all N-digit numbers for i in range(l, r + 1): s = str(i); flag = 0; # Iterate over all digits for j in range(1, N): # Check for equal pair of # adjacent digits if (s[j] == s[j - 1]): flag = 1; break; if (flag == 0): ans+=1; print(ans);# Driver Codeif __name__ == '__main__': N = 2; count(N);# This code is contributed by sapnasingh4991 |
C#
// C# program to implement// the above approachusing System;class GFG{// Function to count the number// of N-digit numbers with no// equal pair of consecutive digitspublic static void count(int N){ // Base Case if (N == 1) { Console.WriteLine(10); return; } // Lowest N-digit number int l = (int)Math.Pow(10, N - 1); // Highest N-digit number int r = (int)Math.Pow(10, N) - 1; // Stores the count of all // required numbers int ans = 0; // Iterate over all N-digit numbers for(int i = l; i <= r; i++) { String s = i.ToString(); int flag = 0; // Iterate over all digits for(int j = 1; j < N; j++) { // Check for equal pair of // adjacent digits if (s[j] == s[j - 1]) { flag = 1; break; } } if (flag == 0) ans++; } Console.WriteLine(ans);}// Driver Codepublic static void Main(String[] args){ int N = 2; count(N);}}// This code is contributed by Princi Singh |
Javascript
<script>// Javascript program to implement// the above approach// Function to count the number// of N-digit numbers with no// equal pair of consecutive digitsfunction count(N){ // Base Case if (N == 1) { document.write(10 + "<br>"); return; } // Lowest N-digit number var l = Math.pow(10, N - 1); // Highest N-digit number var r = Math.pow(10, N) - 1; // Stores the count of all // required numbers var ans = 0; // Iterate over all N-digit numbers for(var i = l; i <= r; i++) { var s = (i.toString()); var flag = 0; // Iterate over all digits for(var j = 1; j < N; j++) { // Check for equal pair of // adjacent digits if (s[j] == s[j - 1]) { flag = 1; break; } } if (flag == 0) ans++; } document.write( ans + "<br>");}// Driver Codevar N = 2;count(N);// This code is contributed by itsok</script> |
81
Time Complexity: O(N * (10N), where N is the given integer.
Auxiliary Space: O(1)
Dynamic Programming Approach: The above approach can be optimized using Dynamic Programming approach. Follow the steps below to solve the problem:
- Initialize DP[][], where DP[i][j] stores the count of numbers having i digits, and ending with j.
- Iterate from 2 to N and follow the steps:
- Calculate the total count of valid i-1 digit numbers by adding all the values of DP[i-1][j] where j ranges from 0 to 9, and store it in temp.
- Update DP[i][j] = temp – DP[i-1][j], where j ranges from 0 to 9.
- The result is the sum of DP[N][j], where j ranges from 0 to 9
Below is the implementation of the above approach:
C++
// C++ Program to implement// the above approach#include<bits/stdc++.h>using namespace std;// Function to count the number// of N-digit numbers with no// equal pair of consecutive digitsvoid count(int N){ // Base Case if (N == 1) { cout << (10) << endl; return; } int dp[N][10]; memset(dp, 0, sizeof(dp)); for (int i = 1; i < 10; i++) dp[0][i] = 1; for (int i = 1; i < N; i++) { // Calculate the total count // of valid (i-1)-digit numbers int temp = 0; for (int j = 0; j < 10; j++) temp += dp[i - 1][j]; // Update dp[][] table for (int j = 0; j < 10; j++) dp[i][j] = temp - dp[i - 1][j]; } // Calculate the count of // required N-digit numbers int ans = 0; for (int i = 0; i < 10; i++) ans += dp[N - 1][i]; cout << ans << endl;}// Driver Codeint main(){ int N = 2; count(N); return 0;}// This code is contributed by sapnasingh4991 |
Java
// Java Program to implement// of the above approachimport java.util.*;class GFG { // Function to count the number // of N-digit numbers with no // equal pair of consecutive digits public static void count(int N) { // Base Case if (N == 1) { System.out.println(10); return; } int dp[][] = new int[N][10]; for (int i = 1; i < 10; i++) dp[0][i] = 1; for (int i = 1; i < N; i++) { // Calculate the total count // of valid (i-1)-digit numbers int temp = 0; for (int j = 0; j < 10; j++) temp += dp[i - 1][j]; // Update dp[][] table for (int j = 0; j < 10; j++) dp[i][j] = temp - dp[i - 1][j]; } // Calculate the count of // required N-digit numbers int ans = 0; for (int i = 0; i < 10; i++) ans += dp[N - 1][i]; System.out.println(ans); } // Driver Code public static void main(String[] args) { int N = 2; count(N); }} |
Python3
# Python3 Program to implement# of the above approach# Function to count the number# of N-digit numbers with no# equal pair of consecutive digitsdef count(N): # Base Case if (N == 1): print(10); return; dp = [[0 for i in range(10)] for j in range(N)] for i in range(1,10): dp[0][i] = 1; for i in range(1, N): # Calculate the total count # of valid (i-1)-digit numbers temp = 0; for j in range(10): temp += dp[i - 1][j]; # Update dp table for j in range(10): dp[i][j] = temp - dp[i - 1][j]; # Calculate the count of # required N-digit numbers ans = 0; for i in range(10): ans += dp[N - 1][i]; print(ans);# Driver Codeif __name__ == '__main__': N = 2; count(N);# This code is contributed by Amit Katiyar |
C#
// C# Program to implement// of the above approachusing System;class GFG{ // Function to count the number // of N-digit numbers with no // equal pair of consecutive digits public static void count(int N) { // Base Case if (N == 1) { Console.WriteLine(10); return; } int [,]dp = new int[N, 10]; for (int i = 1; i < 10; i++) dp[0, i] = 1; for (int i = 1; i < N; i++) { // Calculate the total count // of valid (i-1)-digit numbers int temp = 0; for (int j = 0; j < 10; j++) temp += dp[i - 1, j]; // Update [,]dp table for (int j = 0; j < 10; j++) dp[i, j] = temp - dp[i - 1, j]; } // Calculate the count of // required N-digit numbers int ans = 0; for (int i = 0; i < 10; i++) ans += dp[N - 1, i]; Console.WriteLine(ans); } // Driver Code public static void Main(String[] args) { int N = 2; count(N); }}// This code is contributed by sapnasingh4991 |
Javascript
<script>// Javascript program to implement// the above approach// Function to count the number// of N-digit numbers with no// equal pair of consecutive digitsfunction count(N){ // Base Case if (N == 1) { document.write((10) + "<br>"); return; } var dp = Array.from(Array(N), ()=> Array(10).fill(0)); for(var i = 1; i < 10; i++) dp[0][i] = 1; for(var i = 1; i < N; i++) { // Calculate the total count // of valid (i-1)-digit numbers var temp = 0; for(var j = 0; j < 10; j++) temp += dp[i - 1][j]; // Update dp[][] table for(var j = 0; j < 10; j++) dp[i][j] = temp - dp[i - 1][j]; } // Calculate the count of // required N-digit numbers var ans = 0; for(var i = 0; i < 10; i++) ans += dp[N - 1][i]; document.write(ans);}// Driver Codevar N = 2;count(N);// This code is contributed by noob2000</script> |
81
Time Complexity: O(N), where N is the given integer
Auxiliary Space: O(N)
Efficient Approach: The above approach can be further optimized by observing that for any N digit number, the required answer is 9N which can be calculated using Binary Exponentiation.
Below is the implementation of the above approach:
C++
// C++ program to implement// the above approach#include <bits/stdc++.h>using namespace std;// Iterative Function to calculate// (x^y) % mod in O(log y)int power(int x, int y, int mod){ // Initialize result int res = 1; // Update x if x >= mod x = x % mod; // If x is divisible by mod if (x == 0) return 0; while (y > 0) { // If y is odd, multiply x // with result if ((y & 1) == 1) res = (res * x) % mod; // y must be even now // y = y / 2 y = y >> 1; x = (x * x) % mod; } return res;}// Function to count the number// of N-digit numbers with no// equal pair of consecutive digitsvoid count(int N){ // Base Case if (N == 1) { cout << 10 << endl; return; } cout << (power(9, N, 1000000007)) << endl;}// Driver Codeint main(){ int N = 3; count(N); return 0;}// This code is contributed by sapnasingh4991 |
Java
// Java Program to implement// of the above approachimport java.util.*;class GFG { // Iterative Function to calculate // (x^y) % mod in O(log y) static int power(int x, int y, int mod) { // Initialize result int res = 1; // Update x if x >= mod x = x % mod; // If x is divisible by mod if (x == 0) return 0; while (y > 0) { // If y is odd, multiply x // with result if ((y & 1) == 1) res = (res * x) % mod; // y must be even now // y = y / 2 y = y >> 1; x = (x * x) % mod; } return res; } // Function to count the number // of N-digit numbers with no // equal pair of consecutive digits public static void count(int N) { // Base Case if (N == 1) { System.out.println(10); return; } System.out.println(power(9, N, 1000000007)); } // Driver Code public static void main(String[] args) { int N = 3; count(N); }} |
Python3
# Python3 Program to implement# of the above approach# Iterative Function to calculate# (x^y) % mod in O(log y)def power(x, y, mod): # Initialize result res = 1; # Update x if x >= mod x = x % mod; # If x is divisible by mod if (x == 0): return 0; while (y > 0): # If y is odd, multiply x # with result if ((y & 1) == 1): res = (res * x) % mod; # y must be even now # y = y / 2 y = y >> 1; x = (x * x) % mod; return res;# Function to count the number# of N-digit numbers with no# equal pair of consecutive digitsdef count(N): # Base Case if (N == 1): print(10); return; print(power(9, N, 1000000007));# Driver Codeif __name__ == '__main__': N = 3; count(N);# This code is contributed by Rohit_ranjan |
C#
// C# program to implement// of the above approachusing System;class GFG{// Iterative Function to calculate// (x^y) % mod in O(log y)static int power(int x, int y, int mod){ // Initialize result int res = 1; // Update x if x >= mod x = x % mod; // If x is divisible by mod if (x == 0) return 0; while (y > 0) { // If y is odd, multiply x // with result if ((y & 1) == 1) res = (res * x) % mod; // y must be even now // y = y / 2 y = y >> 1; x = (x * x) % mod; } return res;}// Function to count the number// of N-digit numbers with no// equal pair of consecutive digitspublic static void count(int N){ // Base Case if (N == 1) { Console.WriteLine(10); return; } Console.WriteLine(power(9, N, 1000000007));}// Driver Codepublic static void Main(String[] args){ int N = 3; count(N);}}// This code is contributed by 29AjayKumar |
Javascript
<script>// Javascript program to implement// of the above approach// Iterative Function to calculate// (x^y) % mod in O(log y)function power(x, y, mod){ // Initialize result let res = 1; // Update x if x >= mod x = x % mod; // If x is divisible by mod if (x == 0) return 0; while (y > 0) { // If y is odd, multiply x // with result if ((y & 1) == 1) res = (res * x) % mod; // y must be even now // y = y / 2 y = y >> 1; x = (x * x) % mod; } return res;}// Function to count the number// of N-digit numbers with no// equal pair of consecutive digitsfunction count(N){ // Base Case if (N == 1) { document.write(10); return; } document.write(power(9, N, 1000000007));}// Driver Codelet N = 3;count(N);// this code is contributed by shivanisinghss2110 </script> |
729
Time Complexity: O(logN)
Space Complexity: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
