Friday, January 24, 2025
Google search engine
HomeData Modelling & AICount of N-digit numbers having digit XOR as single digit

Count of N-digit numbers having digit XOR as single digit

Given an integer N, the task is to find the total count of N-Digit numbers such that the Bitwise XOR of the digits of the numbers is a single digit.

Examples:

Input: N = 1
Output: 9
Explanation: 
1, 2, 3, 4, 5, 6, 7, 8, 9 are the numbers.

Input: N = 2
Output: 66
Explanation: 
There are 66 such 2-digit numbers whose Xor of digits is a single digit number.

Approach: The naive approach will be to iterate over all the N-digit numbers and check if the Bitwise XOR of all the digits of the number is a single digit. If yes then include this in the count, otherwise, check for the next number.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find count of N-digit
// numbers with single digit XOR
void countNums(int N)
{
     
    // Range of numbers
    int l = (int)pow(10, N - 1);
    int r = (int)pow(10, N) - 1;
 
    int count = 0;
    for(int i = l; i <= r; i++)
    {
        int xorr = 0, temp = i;
 
        // Calculate XOR of digits
        while (temp > 0)
        {
            xorr = xorr ^ (temp % 10);
            temp /= 10;
        }
 
        // If XOR <= 9,
        // then increment count
        if (xorr <= 9)
            count++;
    }
     
    // Print the count
    cout << count;
}
 
// Driver Code
int main()
{
     
    // Given number
    int N = 2;
 
    // Function call
    countNums(N);
}
 
// This code is contributed by code_hunt


Java




// Java program for the above approach
 
class GFG {
 
    // Function to find count of N-digit
    // numbers with single digit XOR
    public static void countNums(int N)
    {
        // Range of numbers
        int l = (int)Math.pow(10, N - 1),
            r = (int)Math.pow(10, N) - 1;
 
        int count = 0;
 
        for (int i = l; i <= r; i++) {
            int xor = 0, temp = i;
 
            // Calculate XOR of digits
            while (temp > 0) {
                xor = xor ^ (temp % 10);
                temp /= 10;
            }
 
            // If XOR <= 9,
            // then increment count
            if (xor <= 9)
                count++;
        }
 
        // Print the count
        System.out.println(count);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given Number
        int N = 2;
 
        // Function Call
        countNums(N);
    }
}


Python3




# Python3 program for the above approach
 
# Function to find count of N-digit
# numbers with single digit XOR
def countNums(N):
     
    # Range of numbers
    l = pow(10, N - 1)
    r = pow(10, N) - 1
 
    count = 0
    for i in range(l, r + 1):
        xorr = 0
        temp = i
 
        # Calculate XOR of digits
        while (temp > 0):
            xorr = xorr ^ (temp % 10)
            temp //= 10
         
        # If XOR <= 9,
        # then increment count
        if (xorr <= 9):
            count += 1
         
    # Print the count
    print(count)
 
# Driver Code
 
# Given number
N = 2
 
# Function call
countNums(N)
 
# This code is contributed by code_hunt


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find count of N-digit
// numbers with single digit XOR
public static void countNums(int N)
{
     
    // Range of numbers
    int l = (int)Math.Pow(10, N - 1),
        r = (int)Math.Pow(10, N) - 1;
 
    int count = 0;
 
    for(int i = l; i <= r; i++)
    {
        int xor = 0, temp = i;
 
        // Calculate XOR of digits
        while (temp > 0)
        {
            xor = xor ^ (temp % 10);
            temp /= 10;
        }
 
        // If XOR <= 9,
        // then increment count
        if (xor <= 9)
            count++;
    }
 
    // Print the count
    Console.WriteLine(count);
}
 
// Driver Code
public static void Main()
{
     
    // Given number
    int N = 2;
 
    // Function call
    countNums(N);
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find count of N-digit
// numbers with single digit XOR
function countNums(N)
{
     
    // Range of numbers
    let l = Math.floor(Math.pow(10, N - 1));
    let r = Math.floor(Math.pow(10, N)) - 1;
 
    let count = 0;
    for(let i = l; i <= r; i++)
    {
        let xorr = 0, temp = i;
 
        // Calculate XOR of digits
        while (temp > 0)
        {
            xorr = xorr ^ (temp % 10);
            temp = Math.floor(temp / 10);
        }
 
        // If XOR <= 9,
        // then increment count
        if (xorr <= 9)
            count++;
    }
     
    // Print the count
    document.write(count);
}
 
// Driver Code
     
    // Given number
    let N = 2;
 
    // Function call
    countNums(N);
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output: 

66

 

Time Complexity: O(N*10N)
Auxiliary Space: O(1)

Efficient Approach: The idea is to use Dynamic Programming. Observe that the maximum Bitwise XOR that can be obtained is 15.

  1. Create a table dp[][], where dp[i][j] stores the count of i-digit numbers such that their XOR is j.
  2. Initialize the dp[][] for i = 1 and for each i from 2 to N iterate for every digit j from 0 to 9.
  3. For every possible previous XOR k from 0 to 15, find the value by doing XOR of previous XOR k and the digit j, and increment the count of dp[i][value] by dp[i – 1][k].
  4. The total count of N-digit numbers with a single-digit XOR can be found by summing the dp[N][j] where j ranges from 0 to 9.

Below is the implementation of the above approach:

C++




// C++ program for
// the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to find
// count of N-digit
// numbers with single
// digit XOR
void countNums(int N)
  // dp[i][j] stores the number
  // of i-digit numbers with
  // XOR equal to j
  int dp[N][16];
  memset(dp, 0,
         sizeof(dp[0][0]) *
                N * 16);
 
  // For 1-9 store the value
  for (int i = 1; i <= 9; i++)
    dp[0][i] = 1;
 
  // Iterate till N
  for (int i = 1; i < N; i++)
  {
    for (int j = 0; j < 10; j++)
    {
      for (int k = 0; k < 16; k++)
      {
        // Calculate XOR
        int xo = j ^ k;
 
        // Store in DP table
        dp[i][xo] += dp[i - 1][k];
      }
    }
  }
 
  // Initialize count
  int count = 0;
  for (int i = 0; i < 10; i++)
    count += dp[N - 1][i];
 
  // Print the answer
  cout << (count) << endl;
}
  
// Driver Code
int main()
{
  // Given number N
  int N = 1;
 
  // Function Call
  countNums(N);
}
 
// This code is contributed by Chitranayal


Java




// Java program for the above approach
 
class GFG {
 
    // Function to find count of N-digit
    // numbers with single digit XOR
    public static void countNums(int N)
    {
 
        // dp[i][j] stores the number
        // of i-digit numbers with
        // XOR equal to j
        int dp[][] = new int[N][16];
 
        // For 1-9 store the value
        for (int i = 1; i <= 9; i++)
            dp[0][i] = 1;
 
        // Iterate till N
        for (int i = 1; i < N; i++) {
 
            for (int j = 0; j < 10; j++) {
 
                for (int k = 0; k < 16; k++) {
 
                    // Calculate XOR
                    int xor = j ^ k;
 
                    // Store in DP table
                    dp[i][xor] += dp[i - 1][k];
                }
            }
        }
 
        // Initialize count
        int count = 0;
        for (int i = 0; i < 10; i++)
            count += dp[N - 1][i];
 
        // Print the answer
        System.out.println(count);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given number N
        int N = 1;
 
        // Function Call
        countNums(N);
    }
}


Python3




# Python3 program for the
# above approach
 
# Function to find count of
# N-digit numbers with single
# digit XOR
def countNums(N):
   
    # dp[i][j] stores the number
    # of i-digit numbers with
    # XOR equal to j
    dp = [[0 for i in range(16)]
             for j in range(N)];
 
    # For 1-9 store the value
    for i in range(1, 10):
        dp[0][i] = 1;
 
    # Iterate till N
    for i in range(1, N):
        for j in range(0, 10):
            for k in range(0, 16):
                # Calculate XOR
                xor = j ^ k;
 
                # Store in DP table
                dp[i][xor] += dp[i - 1][k];
 
    # Initialize count
    count = 0;
    for i in range(0, 10):
        count += dp[N - 1][i];
 
    # Print answer
    print(count);
 
# Driver Code
if __name__ == '__main__':
   
    # Given number N
    N = 1;
 
    # Function Call
    countNums(N);
 
# This code is contributed by shikhasingrajput


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find count of N-digit
// numbers with single digit XOR
public static void countNums(int N)
{
 
    // dp[i][j] stores the number
    // of i-digit numbers with
    // XOR equal to j
    int [,]dp = new int[N, 16];
 
    // For 1-9 store the value
    for(int i = 1; i <= 9; i++)
        dp[0, i] = 1;
 
    // Iterate till N
    for(int i = 1; i < N; i++)
    {
        for(int j = 0; j < 10; j++)
        {
            for (int k = 0; k < 16; k++)
            {
 
                // Calculate XOR
                int xor = j ^ k;
 
                // Store in DP table
                dp[i, xor] += dp[i - 1, k];
            }
        }
    }
 
    // Initialize count
    int count = 0;
    for(int i = 0; i < 10; i++)
        count += dp[N - 1, i];
 
    // Print the answer
    Console.Write(count);
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given number N
    int N = 1;
 
    // Function call
    countNums(N);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
// javascript program for the above approach
    // Function to find count of N-digit
    // numbers with single digit XOR
    function countNums(N) {
 
        // dp[i][j] stores the number
        // of i-digit numbers with
        // XOR equal to j
        var dp = Array(N);
        for(var i =0;i<N;i++)
        dp[i] = Array(16).fill(0);
 
        // For 1-9 store the value
        for (i = 1; i <= 9; i++)
            dp[0][i] = 1;
 
        // Iterate till N
        for (i = 1; i < N; i++) {
 
            for (j = 0; j < 10; j++) {
 
                for (k = 0; k < 16; k++) {
 
                    // Calculate XOR
                    var xor = j ^ k;
 
                    // Store in DP table
                    dp[i][xor] += dp[i - 1][k];
                }
            }
        }
 
        // Initialize count
        var count = 0;
        for (i = 0; i < 10; i++)
            count += dp[N - 1][i];
 
        // Print the answer
        document.write(count);
    }
 
    // Driver Code
     
        // Given number N
        var N = 1;
 
        // Function Call
        countNums(N);
 
// This code contributed by umadevi9616
</script>


Output: 

9

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Efficient approach : Space optimization

In previous approach we use a 2d Dp of size N+1*16 but the computation of current value is only depend upon the previous and current row of DP. So to optimize the space we can use the single 1D array of size 16 to store the computations of subproblems

Implementation Steps:

  • Create a DP of size 16 and initialize it with 0.
  • Set base case for values from 1 to 9 , dp[] = 1.
  • Now iterate over subproblems and get the current value from previous computations.
  • Create a temp vector to store the current value and after every iteration assign values of temp to DP.
  • Create a variable count and iterate the Dp and add value to count
  • At last print the final answer stored in count.

Implementation:

C++




// C++ code for above approach
 
#include<bits/stdc++.h>
using namespace std;
 
// Function to find
// count of N-digit
// numbers with single
// digit XOR
void countNums(int N)
{
    // dp[i][j] stores the number
    // of i-digit numbers with
    // XOR equal to j
    int dp[16];
    memset(dp, 0, sizeof(dp));
 
    // For 1-9 store the value
    for (int i = 1; i <= 9; i++)
        dp[i] = 1;
 
    // Iterate till N
    for (int i = 1; i < N; i++)
    {
        int temp[16];
        memset(temp, 0, sizeof(temp));
        for (int j = 0; j < 10; j++)
        {
            for (int k = 0; k < 16; k++)
            {
                // Calculate XOR
                int xo = j ^ k;
 
                // Store in temporary table
                temp[xo] += dp[k];
            }
        }
        memcpy(dp, temp, sizeof(dp));
    }
 
    // Initialize count
    int count = 0;
    for (int i = 0; i < 10; i++)
        count += dp[i];
 
    // Print the answer
    cout << (count) << endl;
}
 
// Driver Code
int main()
{
    // Given number N
    int N = 1;
 
    // Function Call
    countNums(N);
}
// this code is contributed by bhardwajji


Java




import java.util.Arrays;
 
public class Main {
    // Function to find
    // count of N-digit
    // numbers with single
    // digit XOR
    static void countNums(int N)
    {
        // dp[i][j] stores the number
        // of i-digit numbers with
        // XOR equal to j
        int[] dp = new int[16];
        Arrays.fill(dp, 0);
 
        // For 1-9 store the value
        for (int i = 1; i <= 9; i++)
            dp[i] = 1;
 
        // Iterate till N
        for (int i = 1; i < N; i++) {
            int[] temp = new int[16];
            Arrays.fill(temp, 0);
            for (int j = 0; j < 10; j++) {
                for (int k = 0; k < 16; k++) {
                    // Calculate XOR
                    int xo = j ^ k;
 
                    // Store in temporary table
                    temp[xo] += dp[k];
                }
            }
            System.arraycopy(temp, 0, dp, 0, dp.length);
        }
 
        // Initialize count
        int count = 0;
        for (int i = 0; i < 10; i++)
            count += dp[i];
 
        // Print the answer
        System.out.println(count);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given number N
        int N = 1;
 
        // Function Call
        countNums(N);
    }
}


Python3




# Function to find
# count of N-digit
# numbers with single
# digit XOR
def countNums(N):
    # dp[i][j] stores the number
    # of i-digit numbers with
    # XOR equal to j
    dp = [0] * 16
 
    # For 1-9 store the value
    for i in range(1, 10):
        dp[i] = 1
 
    # Iterate till N
    for i in range(1, N):
        temp = [0] * 16
        for j in range(10):
            for k in range(16):
                # Calculate XOR
                xo = j ^ k
 
                # Store in temporary table
                temp[xo] += dp[k]
        dp = temp
 
    # Initialize count
    count = 0
    for i in range(10):
        count += dp[i]
 
    # Print the answer
    print(count)
 
# Driver Code
if __name__ == '__main__':
    # Given number N
    N = 1
 
    # Function Call
    countNums(N)


C#




using System;
 
class Program {
    // Function to find count of N-digit
    // numbers with single digit XOR
    static void CountNums(int N)
    {
        // dp[i][j] stores the number
        // of i-digit numbers with
        // XOR equal to j
        int[] dp = new int[16];
        Array.Fill(dp, 0);
        // For 1-9 store the value
        for (int i = 1; i <= 9; i++) {
            dp[i] = 1;
        }
 
        // Iterate till N
        for (int i = 1; i < N; i++) {
            int[] temp = new int[16];
            Array.Fill(temp, 0);
            for (int j = 0; j < 10; j++) {
                for (int k = 0; k < 16; k++) {
                    // Calculate XOR
                    int xo = j ^ k;
 
                    // Store in temporary table
                    temp[xo] += dp[k];
                }
            }
            Array.Copy(temp, dp, dp.Length);
        }
 
        // Initialize count
        int count = 0;
        for (int i = 0; i < 10; i++) {
            count += dp[i];
        }
 
        // Print the answer
        Console.WriteLine(count);
    }
 
    // Driver Code
    static void Main(string[] args)
    {
        // Given number N
        int N = 1;
 
        // Function Call
        CountNums(N);
    }
}


Javascript




function countNums(N) {
  // dp[i][j] stores the number
  // of i-digit numbers with
  // XOR equal to j
  let dp = new Array(16).fill(0);
   
  // For 1-9 store the value
  for (let i = 1; i <= 9; i++) {
    dp[i] = 1;
  }
 
  // Iterate till N
  for (let i = 1; i < N; i++) {
    let temp = new Array(16).fill(0);
    for (let j = 0; j < 10; j++) {
      for (let k = 0; k < 16; k++) {
        // Calculate XOR
        let xo = j ^ k;
 
        // Store in temporary table
        temp[xo] += dp[k];
      }
    }
    dp = temp;
  }
 
  // Initialize count
  let count = 0;
  for (let i = 0; i < 10; i++) {
    count += dp[i];
  }
 
  // Print the answer
  console.log(count);
}
 
// Driver Code
const N = 1;
 
// Function Call
countNums(N);


Output

9

Time Complexity: O(N*10*16) => O(N)
Auxiliary Space: O(16) => O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments