Given two integers N and K. The task is to count all positive integers with length N having an absolute difference between adjacent digits equal to K.
Examples:
Input: N = 4, K = 8
Output: 3
Explanation: The absolute difference between every consecutive digit of each number is 8. Three possible numbers are 8080, 1919 and 9191.Input: N = 2, K = 0
Output: 9
Explanation: 11, 22, 33, 44, 55, 66, 77, 88, 99. The absolute difference between every consecutive digit of each number is 0.
Approach: The approach is based on recursion. Iterate over digits [1, 9], and for each digit, count the N-digit number having a difference of absolute digit as K using recursion. Following cases arrive in the recursive function call.
- Base Case: For all single-digit integers i.e. N = 1, increment answer count.
- Recursive Call: If adding digit K to the one’s digit of the number formed till now (num) does not exceed 9, then recursively call by decreasing N and making num = (num*10 + num%10 + K).
if(num % 10 + K ≤ 9)
recursive_function(10 * num + (num % 10 + K), N – 1);
- If the value of K is non-zero after all the recursive calls and if num % 10 ≥ K, then again recursively call by decreasing the N and update num to (10*num + num%10 – K).
if(num % 10 ≥ K)
recursive_function(10 * num + num % 10 – K, N – 1)
Below is the implementation of the above approach.
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // To store the count of numbers int countNums = 0; // Function that recursively finds the // possible numbers and append into ans void checkUtil( int num, int K, int N) { // Base Case if (N == 1) { countNums++; return ; } // Check the sum of last digit and k // less than or equal to 9 or not if ((num % 10 + K) <= 9) checkUtil(10 * num + (num % 10 + K), K, N - 1); // If K = 0, then subtraction and // addition does not make any // difference if (K) { // If unit's digit greater than K if ((num % 10 - K) >= 0) checkUtil(10 * num + num % 10 - K, K, N - 1); } } // Function to call checkUtil function // for every integer from 1 to 9 void check( int K, int N) { // Loop to check for // all digits from 1 to 9 for ( int i = 1; i <= 9; i++) { checkUtil(i, K, N); } } // Driver Code int main() { // Given N and K int N = 4, K = 8; check(K, N); // Count total possible numbers cout << countNums << endl; return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // To store the count of numbers static int countNums = 0 ; // Function that recursively finds the // possible numbers and append into ans static void checkUtil( int num, int K, int N) { // Base Case if (N == 1 ) { countNums++; return ; } // Check the sum of last digit and k // less than or equal to 9 or not if ((num % 10 + K) <= 9 ) checkUtil( 10 * num + (num % 10 + K), K, N - 1 ); // If K = 0, then subtraction and // addition does not make any // difference if (K> 0 ) { // If unit's digit greater than K if ((num % 10 - K) >= 0 ) checkUtil( 10 * num + num % 10 - K, K, N - 1 ); } } // Function to call checkUtil function // for every integer from 1 to 9 static void check( int K, int N) { // Loop to check for // all digits from 1 to 9 for ( int i = 1 ; i <= 9 ; i++) { checkUtil(i, K, N); } } // Driver Code public static void main(String[] args) { // Given N and K int N = 4 , K = 8 ; check(K, N); // Count total possible numbers System.out.print(countNums + "\n" ); } } // This code contributed by shikhasingrajput |
Python3
# Python program for the above approach # To store the count of numbers countNums = 0 ; # Function that recursively finds the # possible numbers and append into ans def checkUtil(num, K, N): global countNums; # Base Case if (N = = 1 ): countNums + = 1 ; return ; # Check the sum of last digit and k # less than or equal to 9 or not if ((num % 10 + K) < = 9 ): checkUtil( 10 * num + (num % 10 + K), K, N - 1 ); # If K = 0, then subtraction and # addition does not make any # difference if (K > 0 ): # If unit's digit greater than K if ((num % 10 - K) > = 0 ): checkUtil( 10 * num + num % 10 - K, K, N - 1 ); # Function to call checkUtil function # for every integer from 1 to 9 def check(K, N): # Loop to check for # all digits from 1 to 9 for i in range ( 1 , 10 ): checkUtil(i, K, N); # Driver Code if __name__ = = '__main__' : # Given N and K N = 4 ; K = 8 ; check(K, N); # Count total possible numbers print (countNums); # This code is contributed by shikhasingrajput |
C#
// C# program for the above approach using System; class GFG{ // To store the count of numbers static int countNums = 0; // Function that recursively finds the // possible numbers and append into ans static void checkUtil( int num, int K, int N) { // Base Case if (N == 1) { countNums++; return ; } // Check the sum of last digit and k // less than or equal to 9 or not if ((num % 10 + K) <= 9) checkUtil(10 * num + (num % 10 + K), K, N - 1); // If K = 0, then subtraction and // addition does not make any // difference if (K > 0) { // If unit's digit greater than K if ((num % 10 - K) >= 0) checkUtil(10 * num + num % 10 - K, K, N - 1); } } // Function to call checkUtil function // for every integer from 1 to 9 static void check( int K, int N) { // Loop to check for // all digits from 1 to 9 for ( int i = 1; i <= 9; i++) { checkUtil(i, K, N); } } // Driver Code public static void Main(String[] args) { // Given N and K int N = 4, K = 8; check(K, N); // Count total possible numbers Console.Write(countNums + "\n" ); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript code for the above approach // To store the count of numbers let countNums = 0; // Function that recursively finds the // possible numbers and append into ans function checkUtil(num, K, N) { // Base Case if (N == 1) { countNums++; return ; } // Check the sum of last digit and k // less than or equal to 9 or not if ((num % 10 + K) <= 9) checkUtil(10 * num + (num % 10 + K), K, N - 1); // If K = 0, then subtraction and // addition does not make any // difference if (K) { // If unit's digit greater than K if ((num % 10 - K) >= 0) checkUtil(10 * num + num % 10 - K, K, N - 1); } } // Function to call checkUtil function // for every integer from 1 to 9 function check(K, N) { // Loop to check for // all digits from 1 to 9 for (let i = 1; i <= 9; i++) { checkUtil(i, K, N); } } // Driver Code // Given N and K let N = 4, K = 8; check(K, N); // Count total possible numbers document.write(countNums + '<br>'); // This code is contributed by Potta Lokesh </script> |
3
Time Complexity: O(2N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!