Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AICount of multiplicative partitions of N

Count of multiplicative partitions of N

Given an integer N, the task is to find the total number of multiplicative partitions for N.

Multiplicative Partition: Number of ways of factoring of an integer with all factors greater than 1.
 

Examples: 

Input: N = 20 
Output:
Explanation: 
Multiplicative partitions of 20 are: 
2 × 2 × 5 = 2 × 10 = 4 × 5 = 20.
Input: N = 30 
Output:
Explanation: 
Multiplicative partitions of 30 are: 
2 × 3 × 5 = 2 × 15 = 6 × 5 = 3 × 10 = 30 
 

 

Approach: The idea is to try for every divisor of the N and then recursively break the dividend to get the multiplicative partitions. Below are the illustrations of the steps of the approach:

  • Initialize minimum factor as 2. Since it is the minimum factor other than 1.
  • Start a loop from i = minimum to N – 1, and check if the number divides N and N/i > i, then increment the counter by 1 and again call the same function. Since i divides n so it means i and N/i can be factorized some more times.

For Example:

If N = 30, let i = min = 2 
30 % 2 = 0, so again recur with (2, 15) 
15 % 3 = 0, so again recur with (3, 5) 


and so on. 
 

Below is the implementation of the above approach:
 

C++




// C++ implementation to find
// the multiplicative partitions of
// the given number N
#include <bits/stdc++.h>
using namespace std;
 
// Function to return number of ways
// of factoring N with all
// factors greater than 1
static int getDivisors(int min, int n)
{
     
    // Variable to store number of ways
    // of factoring n with all
    // factors greater than 1
    int total = 0;
     
    for(int i = min; i < n; ++i)
    {
        if (n % i == 0 && n / i >= i)
        {
            ++total;
            if (n / i > i)
                total += getDivisors(i, n / i);
        }
    }
    return total;
}
 
// Driver code
int main()
{
    int n = 30;
     
    // 2 is the minimum factor of
    // number other than 1.
    // So calling recursive
    // function to find
    // number of ways of factoring N
    // with all factors greater than 1
    cout << 1 + getDivisors(2, n);
     
    return 0;
}
 
// This code is contributed by rutvik_56


Java




// Java implementation to find
// the multiplicative partitions of
// the given number N
 
class MultiPart {
 
    // Function to return number of ways
    // of factoring N with all
    // factors greater than 1
    static int getDivisors(int min, int n)
    {
 
        // Variable to store number of ways
        // of factoring n with all
        // factors greater than 1
        int total = 0;
 
        for (int i = min; i < n; ++i)
 
            if (n % i == 0 && n / i >= i) {
                ++total;
                if (n / i > i)
                    total
                        += getDivisors(
                            i, n / i);
            }
 
        return total;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 30;
 
        // 2 is the minimum factor of
        // number other than 1.
        // So calling recursive
        // function to find
        // number of ways of factoring N
        // with all factors greater than 1
        System.out.println(
            1 + getDivisors(2, n));
    }
}


Python3




# Python3 implementation to find
# the multiplicative partitions of
# the given number N
 
# Function to return number of ways
# of factoring N with all
# factors greater than 1
def getDivisors(min, n):
     
    # Variable to store number of ways
    # of factoring n with all
    # factors greater than 1
    total = 0
 
    for i in range(min, n):
        if (n % i == 0 and n // i >= i):
            total += 1
            if (n // i > i):
                total += getDivisors(i, n // i)
                 
    return total
 
# Driver code
if __name__ == '__main__':
   
    n = 30
 
    # 2 is the minimum factor of
    # number other than 1.
    # So calling recursive
    # function to find
    # number of ways of factoring N
    # with all factors greater than 1
    print(1 + getDivisors(2, n))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation to find
// the multiplicative partitions of
// the given number N
using System;
 
class GFG{
     
// Function to return number of ways
// of factoring N with all
// factors greater than 1
static int getDivisors(int min, int n)
{
 
    // Variable to store number of ways
    // of factoring n with all
    // factors greater than 1
    int total = 0;
 
    for(int i = min; i < n; ++i)
        if (n % i == 0 && n / i >= i)
        {
            ++total;
            if (n / i > i)
                total+= getDivisors(i, n / i);
        }
 
    return total;
}
 
// Driver code
public static void Main()
{
    int n = 30;
 
    // 2 is the minimum factor of
    // number other than 1.
    // So calling recursive
    // function to find
    // number of ways of factoring N
    // with all factors greater than 1
    Console.Write(1 + getDivisors(2, n));
}
}
 
// This code is contributed by adityakumar27200


Javascript




<script>
 
// Javascript implementation to find
// the multiplicative partitions of
// the given number N
 
// Function to return number of ways
// of factoring N with all
// factors greater than 1
function getDivisors(min, n)
{
     
    // Variable to store number of ways
    // of factoring n with all
    // factors greater than 1
    var total = 0;
     
    for(var i = min; i < n; ++i)
    {
        if (n % i == 0 && n / i >= i)
        {
            ++total;
            if (n / i > i)
                total += getDivisors(i, n / i);
        }
    }
    return total;
}
 
// Driver code
var n = 30;
 
// 2 is the minimum factor of
// number other than 1.
// So calling recursive
// function to find
// number of ways of factoring N
// with all factors greater than 1
document.write( 1 + getDivisors(2, n));
 
 
</script>


Output: 

5

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments