Monday, January 13, 2025
Google search engine
HomeData Modelling & AICount of multiples in an Array before every element

Count of multiples in an Array before every element

Given an array arr of size N, the task is to count the number of indices j (j<i) such that a[i] divides a[j], for all valid indexes i
Examples: 
 

Input: arr[] = {8, 1, 28, 4, 2, 6, 7} 
Output: 0, 1, 0, 2, 3, 0, 1 
No of multiples for each element before itself – 
N(8) = 0 () 
N(1) = 1 (8) 
N(28) = 0 () 
N(4) = 2 (28, 8) 
N(2) = 3 (4, 28, 8) 
N(6) = 0 () 
N(7) = 1 (28)
Input: arr[] = {1, 1, 1, 1} 
Output: 0, 1, 2, 3 
 

 

Naive Approach: Traverse through all valid indices j, in range [0, i-1], for each index i; and count the divisors for each indexes.
Time Complexity: O(N2) 
Space Complexity: O(1)
Efficient Approach: This approach is to use map. Increment the count of factors in the map while traversing the array and lookup for that count in the map to find all valid j (< i) without traversing back.
Below is the implementation of the above approach.
 

C++




// C++ program to count of multiples
// in an Array before every element
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find all factors of N
// and keep their count in map
void add_factors(int n,
                 unordered_map<int, int>& mp)
{
    // Traverse from 1 to sqrt(N)
    // if i divides N,
    // increment i and N/i in map
    for (int i = 1; i <= int(sqrt(n)); i++) {
        if (n % i == 0) {
            if (n / i == i)
                mp[i]++;
            else {
                mp[i]++;
                mp[n / i]++;
            }
        }
    }
}
 
// Function to count of multiples
// in an Array before every element
void count_divisors(int a[], int n)
{
 
    // To store factors all of all numbers
    unordered_map<int, int> mp;
 
    // Traverse for all possible i's
    for (int i = 0; i < n; i++) {
        // Printing value of a[i] in map
        cout << mp[a[i]] << " ";
 
        // Now updating the factors
        // of a[i] in the map
        add_factors(a[i], mp);
    }
}
 
// Driver code
int main()
{
    int arr[] = { 8, 1, 28, 4, 2, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    count_divisors(arr, n);
 
    return 0;
}


Java




// Java program to count of multiples
// in an Array before every element
import java.util.*;
 
class GFG{
  
// Function to find all factors of N
// and keep their count in map
static void add_factors(int n,
                 HashMap<Integer,Integer> mp)
{
    // Traverse from 1 to Math.sqrt(N)
    // if i divides N,
    // increment i and N/i in map
    for (int i = 1; i <= (Math.sqrt(n)); i++) {
        if (n % i == 0) {
            if (n / i == i) {
                if(mp.containsKey(i))
                    mp.put(i, mp.get(i) + 1);
                else
                    mp.put(i, 1);
            }
            else {
                if(mp.containsKey(i))
                    mp.put(i, mp.get(i) + 1);
                else
                    mp.put(i, 1);
                if(mp.containsKey(n / i))
                    mp.put(n / i, mp.get(n / i) + 1);
                else
                    mp.put(n / i, 1);
            }
        }
    }
}
  
// Function to count of multiples
// in an Array before every element
static void count_divisors(int a[], int n)
{
  
    // To store factors all of all numbers
    HashMap<Integer,Integer> mp = new HashMap<Integer,Integer>();
  
    // Traverse for all possible i's
    for (int i = 0; i < n; i++) {
        // Printing value of a[i] in map
        System.out.print(mp.get(a[i]) == null ? 0 + " " : mp.get(a[i]) + " ");
  
        // Now updating the factors
        // of a[i] in the map
        add_factors(a[i], mp);
    }
}
  
// Driver code
public static void main(String[] args)
{
    int arr[] = { 8, 1, 28, 4, 2, 6, 7 };
    int n = arr.length;
  
    // Function call
    count_divisors(arr, n);
  
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python 3 program to count of multiples
# in an Array before every element
from collections import defaultdict
import math
  
# Function to find all factors of N
# and keep their count in map
def add_factors(n, mp):
 
    # Traverse from 1 to sqrt(N)
    # if i divides N,
    # increment i and N/i in map
    for i in range(1, int(math.sqrt(n)) + 1,):
        if (n % i == 0):
            if (n // i == i):
                mp[i] += 1
            else :
                mp[i] += 1
                mp[n // i] += 1
  
# Function to count of multiples
# in an Array before every element
def count_divisors(a, n):
  
    # To store factors all of all numbers
    mp = defaultdict(int)
  
    # Traverse for all possible i's
    for i in range(n) :
        # Printing value of a[i] in map
        print(mp[a[i]], end=" ")
  
        # Now updating the factors
        # of a[i] in the map
        add_factors(a[i], mp)
  
# Driver code
if __name__ == "__main__":
     
    arr = [ 8, 1, 28, 4, 2, 6, 7 ]
    n = len(arr)
  
    # Function call
    count_divisors(arr, n)
  
# This code is contributed by chitranayal


C#




// C# program to count of multiples
// in an Array before every element
using System;
using System.Collections.Generic;
 
class GFG{
   
// Function to find all factors of N
// and keep their count in map
static void add_factors(int n,
                 Dictionary<int,int> mp)
{
    // Traverse from 1 to Math.Sqrt(N)
    // if i divides N,
    // increment i and N/i in map
    for (int i = 1; i <= (Math.Sqrt(n)); i++) {
        if (n % i == 0) {
            if (n / i == i) {
                if(mp.ContainsKey(i))
                    mp[i] = mp[i] + 1;
                else
                    mp.Add(i, 1);
            }
            else {
                if(mp.ContainsKey(i))
                    mp[i] = mp[i] + 1;
                else
                    mp.Add(i, 1);
                if(mp.ContainsKey(n / i))
                    mp[n / i] = mp[n / i] + 1;
                else
                    mp.Add(n / i, 1);
            }
        }
    }
}
   
// Function to count of multiples
// in an Array before every element
static void count_divisors(int []a, int n)
{
   
    // To store factors all of all numbers
    Dictionary<int,int> mp = new Dictionary<int,int>();
   
    // Traverse for all possible i's
    for (int i = 0; i < n; i++) {
        // Printing value of a[i] in map
        Console.Write(!mp.ContainsKey(a[i]) ? 0 + " " : mp[a[i]] + " ");
   
        // Now updating the factors
        // of a[i] in the map
        add_factors(a[i], mp);
    }
}
   
// Driver code
public static void Main(String[] args)
{
    int []arr = { 8, 1, 28, 4, 2, 6, 7 };
    int n = arr.Length;
   
    // Function call
    count_divisors(arr, n);
   
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
 
// Javascript program to count of multiples
// in an Array before every element
 
// Function to find all factors of N
// and keep their count in map
function add_factors(n, mp)
{
 
    // Traverse from 1 to sqrt(N)
    // if i divides N,
    // increment i and N/i in map
    for (var i = 1; i <= parseInt(Math.sqrt(n)); i++) {
        if (n % i == 0) {
            if (parseInt(n / i) == i)
            {
                if(mp.has(i))
                    mp.set(i, mp.get(i)+1)
                else
                    mp.set(i, 1)
            }
            else {
 
                if(mp.has(i))
                    mp.set(i, mp.get(i)+1)
                else
                    mp.set(i, 1)
                 
                if(mp.has(parseInt(n/i)))
                    mp.set(parseInt(n/i), mp.get(parseInt(n/i))+1)
                else
                    mp.set(parseInt(n/i), 1)
                     
            }
        }
    }
    return mp;
}
 
// Function to count of multiples
// in an Array before every element
function count_divisors(a, n)
{
 
    // To store factors all of all numbers
    var mp = new Map();
 
    // Traverse for all possible i's
    for (var i = 0; i < n; i++)
    {
     
        // Printing value of a[i] in map
        document.write( (mp.has(a[i])?mp.get(a[i]):0) + " ");
 
        // Now updating the factors
        // of a[i] in the map
        mp = add_factors(a[i], mp);
 
    }
}
 
// Driver code
var arr = [8, 1, 28, 4, 2, 6, 7];
var n = arr.length;
 
// Function call
count_divisors(arr, n);
 
// This code is contributed by famously.
</script>


Output

0 1 0 2 3 0 1 

Time Complexity: O(N * sqrt(val)), where N is the size of array and val is the maximum value of elements present in the array.

Auxiliary Space: O(N), as we are using extra space for map mp.

Approach 2: WIthout MAP:

In the code using maps, we use a defaultdict to keep track of the count of each factor for all numbers encountered so far. This allows us to avoid recomputing the factorization for each number in the input array. Instead, we can simply look up the count of factors for each element in the map and increment it as we encounter new multiples.

C++




#include <iostream>
#include <cmath>
#include <vector>
 
using namespace std;
 
// Function to find all factors of N
// and return their count
int count_factors(int n) {
    int count = 0;
 
    // Traverse from 1 to sqrt(N)
    // if i divides N, increment count
    for (int i = 1; i <= sqrt(n); i++) {
        if (n % i == 0) {
            if (n / i == i) {
                count++;
            } else {
                count += 2;
            }
        }
    }
 
    return count;
}
 
// Function to count of multiples
// in an Array before every element
void count_divisors(vector<int> a, int n) {
 
    // Traverse for all possible i's
    for (int i = 0; i < n; i++) {
        // Count the number of multiples
        // of a[i] in the array
        int count = 0;
        for (int j = 0; j < i; j++) {
            if (a[j] % a[i] == 0) {
                count++;
            }
        }
 
        // Print the count
        cout << count << " ";
    }
}
 
// Driver code
int main() {
 
    vector<int> arr {8, 1, 28, 4, 2, 6, 7};
    int n = arr.size();
 
    // Function call
    count_divisors(arr, n);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
    // Function to find all factors of N
    // and return their count
    public static int countFactors(int n) {
        int count = 0;
 
        // Traverse from 1 to sqrt(N)
        // if i divides N, increment count
        for (int i = 1; i <= Math.sqrt(n); i++) {
            if (n % i == 0) {
                if (n / i == i) {
                    count++;
                } else {
                    count += 2;
                }
            }
        }
 
        return count;
    }
 
    // Function to count of multiples
    // in an Array before every element
    public static void countDivisors(List<Integer> a, int n) {
 
        // Traverse for all possible i's
        for (int i = 0; i < n; i++) {
            // Count the number of multiples
            // of a[i] in the array
            int count = 0;
            for (int j = 0; j < i; j++) {
                if (a.get(j) % a.get(i) == 0) {
                    count++;
                }
            }
 
            // Print the count
            System.out.print(count + " ");
        }
    }
 
    // Driver code
    public static void main(String[] args) {
 
        List<Integer> arr = Arrays.asList(8, 1, 28, 4, 2, 6, 7);
        int n = arr.size();
 
        // Function call
        countDivisors(arr, n);
 
    }
}


Python3




import math
 
# Function to find all factors of N
# and return their count
def count_factors(n):
    count = 0
 
    # Traverse from 1 to sqrt(N)
    # if i divides N, increment count
    for i in range(1, int(math.sqrt(n)) + 1):
        if (n % i == 0):
            if (n // i == i):
                count += 1
            else:
                count += 2
 
    return count
 
# Function to count of multiples
# in an Array before every element
def count_divisors(a, n):
 
    # Traverse for all possible i's
    for i in range(n):
        # Count the number of multiples
        # of a[i] in the array
        count = 0
        for j in range(i):
            if a[j] % a[i] == 0:
                count += 1
 
        # Print the count
        print(count, end=" ")
 
# Driver code
if __name__ == "__main__":
     
    arr = [ 8, 1, 28, 4, 2, 6, 7 ]
    n = len(arr)
 
    # Function call
    count_divisors(arr, n)


C#




using System;
using System.Collections.Generic;
 
namespace CountMultiples
{
class Program
{
// Function to find all factors of N
// and return their count
public static int CountFactors(int n)
{
int count = 0;
          // Traverse from 1 to sqrt(N)
        // if i divides N, increment count
        for (int i = 1; i <= Math.Sqrt(n); i++)
        {
            if (n % i == 0)
            {
                if (n / i == i)
                {
                    count++;
                }
                else
                {
                    count += 2;
                }
            }
        }
 
        return count;
    }
 
    // Function to count of multiples
    // in an Array before every element
    public static void CountDivisors(List<int> a, int n)
    {
        // Traverse for all possible i's
        for (int i = 0; i < n; i++)
        {
            // Count the number of multiples
            // of a[i] in the array
            int count = 0;
            for (int j = 0; j < i; j++)
            {
                if (a[j] % a[i] == 0)
                {
                    count++;
                }
            }
 
            // Print the count
            Console.Write(count + " ");
        }
    }
 
    // Driver code
    static void Main(string[] args)
    {
        List<int> arr = new List<int> { 8, 1, 28, 4, 2, 6, 7 };
        int n = arr.Count;
 
        // Function call
        CountDivisors(arr, n);
    }
}
}


Javascript




// Function to find all factors of N
// and return their count
function count_factors(n) {
    let count = 0;
     
    // Traverse from 1 to sqrt(N)
    // if i divides N, increment count
    for (let i = 1; i <= Math.sqrt(n); i++) {
        if (n % i == 0) {
            if (n / i == i) {
                count++;
            } else {
                count += 2;
            }
        }
    }
 
    return count;
}
 
// Function to count of multiples
// in an Array before every element
function count_divisors(a, n) {
    // Traverse for all possible i's
    for (let i = 0; i < n; i++) {
        // Count the number of multiples
        // of a[i] in the array
        let count = 0;
        for (let j = 0; j < i; j++) {
            if (a[j] % a[i] == 0) {
                count++;
            }
        }
 
        // Print the count
        console.log(count + " ");
    }
}
 
// Driver code
let arr = [8, 1, 28, 4, 2, 6, 7];
let n = arr.length;
 
// Function call
count_divisors(arr, n);


Output

0 1 0 2 3 0 1 

Time Complexity: O(sqrt(n)), where N is the size of array and val is the maximum value of elements present in the array.

Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments