Friday, January 3, 2025
Google search engine
HomeData Modelling & AICount of minimum reductions required to get the required sum K

Count of minimum reductions required to get the required sum K

Given N pairs of integers and an integer K, the task is to find the minimum number of reductions required such that the sum of the first elements of each pair is ? K.Each reduction involves reducing the first value of a pair to its second value. If it is not possible to make the sum ? K, print -1.

Examples: 
Input: N = 5, K = 32 
10 6 
6 4 
8 5 
9 8 
5 2 
Output:
Explanation: 
Total Sum = 10 + 6 + 8 + 9 + 5 = 38 > K 
Reducing 10 – > 6 and 8 – > 5 reduces the sum to 31( 6 + 6 + 5 + 9 + 5) which is less than K.

Input: N = 4, K = 25 
10 5 
20 9 
12 10 
4 2 
Output: -1 

Approach: 
Follow the steps below to solve the problem: 

  1. Calculate the sum of the first element of every pair. If the sum is already ? K, print 0.
  2. Sort the given pairs based on their difference.
  3. Count the number of differences of pairs that need to be added in non-increasing order to get the sum to be less than K.
  4. If the sum exceeds K after traversal of all pairs, print -1. Otherwise, print the count.

Below is the implementation of the above approach: 

C++




// C++ Program to find the count of
// minimum reductions required to
// get the required sum K
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of minimum reductions
int countReductions(
    vector<pair<int, int> >& v,
    int K)
{
 
    int sum = 0;
    for (auto i : v) {
        sum += i.first;
    }
 
    // If the sum is already
    // less than K
    if (sum <= K) {
        return 0;
    }
 
    // Sort in non-increasing
    // order of difference
    sort(v.begin(), v.end(),
         [&](
             pair<int, int> a,
             pair<int, int> b) {
             return (a.first - a.second)
                    > (b.first - b.second);
         });
 
    int i = 0;
    while (sum > K && i < v.size()) {
        sum -= (v[i].first
                - v[i].second);
        i++;
    }
 
    if (sum <= K)
        return i;
 
    return -1;
}
 
// Driver Code
int main()
{
    int N = 4, K = 25;
 
    vector<pair<int, int> > v(N);
    v[0] = { 10, 5 };
    v[1] = { 20, 9 };
    v[2] = { 12, 10 };
    v[3] = { 4, 2 };
 
    // Function Call
    cout << countReductions(v, K)
         << endl;
    return 0;
}


Java




// Java program to find the count of
// minimum reductions required to
// get the required sum K
import java.util.*;
 
class GFG{
     
// Function to return the count
// of minimum reductions
static int countReductions(ArrayList<int[]> v,
                           int K)
{
    int sum = 0;
    for(int[] i : v)
    {
        sum += i[0];
    }
 
    // If the sum is already
    // less than K
    if (sum <= K)
    {
        return 0;
    }
 
    // Sort in non-increasing
    // order of difference
    Collections.sort(v, (a, b) -> Math.abs(b[0] - b[1]) -
                                  Math.abs(a[0] - a[1]));
 
    int i = 0;
    while (sum > K && i < v.size())
    {
        sum -= (v.get(i)[0] - v.get(i)[1]);
        i++;
    }
 
    if (sum <= K)
        return i;
 
    return -1;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 4, K = 25;
 
    ArrayList<int[]> v = new ArrayList<>();
 
    v.add(new int[] { 10, 5 });
    v.add(new int[] { 20, 9 });
    v.add(new int[] { 12, 10 });
    v.add(new int[] { 4, 2 });
 
    // Function Call
    System.out.println(countReductions(v, K));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program to find the count of
# minimum reductions required to
# get the required sum K
from typing import Any, List
 
# Function to return the count
# of minimum reductions
def countReductions(v: List[Any], K: int) -> int:
 
    sum = 0
     
    for i in v:
        sum += i[0]
 
    # If the sum is already
    # less than K
    if (sum <= K):
        return 0
 
    # Sort in non-increasing
    # order of difference
    v.sort(key = lambda a : a[0] - a[1])
 
    i = 0
     
    while (sum > K and i < len(v)):
        sum -= (v[i][0] - v[i][1])
        i += 1
 
    if (sum <= K):
        return i
 
    return -1
 
# Driver Code
if __name__ == "__main__":
 
    N = 4
    K = 25
 
    v = [[0, 0] for _ in range(N)]
    v[0] = [10, 5]
    v[1] = [20, 9]
    v[2] = [12, 10]
    v[3] = [4, 2]
 
    # Function Call
    print(countReductions(v, K))
 
# This code is contributed by sanjeev2552


C#




// C# program to find the count of
// minimum reductions required to
// get the required sum K
 
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG {
 
    // Function to return the count
    // of minimum reductions
    static int countReductions(List<int[]> v, int K)
    {
        int sum = 0;
        foreach(var j in v) { sum += j[0]; }
 
        // If the sum is already
        // less than K
        if (sum <= K) {
            return 0;
        }
 
        // Sort in non-increasing
        // order of difference
        v = v.OrderBy(b => Math.Abs(b[0] - b[1])).ToList();
 
        int i = 0;
        while (sum > K && i < v.Count) {
            sum -= (v[i][0] - v[i][1]);
            i++;
        }
 
        if (sum <= K)
            return i;
 
        return -1;
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        int  K = 25;
 
        List<int[]> v = new List<int[]>();
 
        v.Add(new[] { 10, 5 });
        v.Add(new[] { 20, 9 });
        v.Add(new[] { 12, 10 });
        v.Add(new[] { 4, 2 });
 
        // Function Call
        Console.WriteLine(countReductions(v, K));
    }
}
 
// This code is contributed by phasing17


Javascript




// JS program to find the count of
// minimum reductions required to
// get the required sum K
 
// Function to return the count
// of minimum reductions
function countReductions(v, K)
{
   let sum = 0
     
    for (let i of v)
        sum += i[0]
 
    // If the sum is already
    // less than K
    if (sum <= K)
        return 0
 
    // Sort in non-increasing
    // order of difference
    v.sort(function (a) { return a[0] - a[1]})
 
    let i = 0
     
    while (sum > K && i < v.length)
    {
        sum -= (v[i][0] - v[i][1])
        i += 1
    }
 
    if (sum <= K)
        return i
 
    return -1
}
 
// Driver Code
let N = 4
let K = 25
 
let v = []
for (var i = 0; i < N; i++)
    v.push([0, 0])
     
v[0] = [10, 5]
v[1] = [20, 9]
v[2] = [12, 10]
v[3] = [4, 2]
 
// Function Call
console.log(countReductions(v, K))
 
 
// This code is contributed by phasing17


Output: 

-1

 

Time Complexity:O(NlogN) 
Auxiliary Space:O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments