Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of matrices (of different orders) with given number of elements

Count of matrices (of different orders) with given number of elements

Given a number N denotes the total number of elements in a matrix, the task is to print all possible order of matrix. An order is a pair (m, n) of integers where m is number of rows and n is number of columns. For example, if the number of elements is 8 then all possible orders are: 
(1, 8), (2, 4), (4, 2), (8, 1).
Examples: 

Input: N = 8 
Output: (1, 2) (2, 4) (4, 2) (8, 1)
Input: N = 100 
Output: 
(1, 100) (2, 50) (4, 25) (5, 20) (10, 10) (20, 5) (25, 4) (50, 2) (100, 1)

Approach: 
A matrix is said to be of order m x n if it has m rows and n columns. The total number of elements in a matrix is equal to (m*n). So we start from 1 and check one by one if it divides N(the total number of elements). If it divides, it will be one possible order.
Below is the implementation of the above approach:  

C++




// C++ implementation of the above approach
#include <iostream>
using namespace std;
 
// Function to print all possible order
void printAllOrder(int n)
{
    // total number of elements in a matrix
    // of order m * n is equal (m*n)
    // where m is number of rows and n is
    // number of columns
    for (int i = 1; i <= n; i++) {
 
        // if n is divisible by i then i
        // and n/i will be the one
        // possible order of the matrix
        if (n % i == 0) {
 
            // print the given format
            cout << i << " " << n / i << endl;
        }
    }
}
 
// Driver code
int main()
{
    int n = 10;
    printAllOrder(n);
    return 0;
}


Java




// Java implementation of the above approach
 
 
class GFG
    {
    // Function to print all possible order
    static void printAllOrder(int n)
    {
        // total number of elements in a matrix
        // of order m * n is equal (m*n)
        // where m is number of rows and n is
        // number of columns
        for (int i = 1; i <= n; i++) {
     
            // if n is divisible by i then i
            // and n/i will be the one
            // possible order of the matrix
            if (n % i == 0) {
     
                // print the given format
                System.out.println( i + " " + n / i );
            }
        }
    }
     
    // Driver code
    public static void main(String []args)
    {
        int n = 10;
        printAllOrder(n);
         
    }
 
}
 
 
// This code is contributed by ihritik


Python




# Python implementation of the above approach
 
# Function to print all possible order
def printAllOrder(n):
 
    # total number of elements in a matrix
    # of order m * n is equal (m*n)
    # where m is number of rows and n is
    # number of columns
    for i in range(1,n+1):
 
        # if n is divisible by i then i
        # and n/i will be the one
        # possible order of the matrix
        if (n % i == 0) :
 
            # print the given format
            print( i ,n // i )
         
     
 
 
# Driver code
n = 10
printAllOrder(n)
 
 
# This code is contributed by ihritik


C#




// C# implementation of the above approach
 
using System;
class GFG
    {
    // Function to print all possible order
    static void printAllOrder(int n)
    {
        // total number of elements in a matrix
        // of order m * n is equal (m*n)
        // where m is number of rows and n is
        // number of columns
        for (int i = 1; i <= n; i++) {
     
            // if n is divisible by i then i
            // and n/i will be the one
            // possible order of the matrix
            if (n % i == 0) {
     
                // print the given format
                Console.WriteLine( i + " " + n / i );
            }
        }
    }
     
    // Driver code
    public static void Main()
    {
        int n = 10;
        printAllOrder(n);
         
    }
 
}
 
// This code is contributed by ihritik


PHP




<?php
// PHP implementation of the above approach
 
// Function to print all possible order
function printAllOrder($n)
{
    // total number of elements in a matrix
    // of order m * n is equal (m*n)
    // where m is number of rows and n is
    // number of columns
    for ($i = 1; $i <= $n; $i++)
    {
 
        // if n is divisible by i then i
        // and n/i will be the one
        // possible order of the matrix
        if ($n % $i == 0)
        {
 
            // print the given format
            echo $i, " ", ($n / $i), "\n";
        }
    }
}
 
// Driver code
$n = 10;
printAllOrder($n);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
// Java Script implementation of the above approach
 
 
    // Function to print all possible order
    function printAllOrder( n)
    {
        // total number of elements in a matrix
        // of order m * n is equal (m*n)
        // where m is number of rows and n is
        // number of columns
        for (let i = 1; i <= n; i++) {
     
            // if n is divisible by i then i
            // and n/i will be the one
            // possible order of the matrix
            if (n % i == 0) {
     
                // print the given format
                document.write( i + " " + n / i+"<br>" );
            }
        }
    }
     
    // Driver code
     
        let n = 10;
        printAllOrder(n);
         
     
// This code is contributed by sravan
</script>


Output: 

1 10
2 5
5 2
10 1

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments