Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of elements which are second smallest among three consecutive elements

Count of elements which are second smallest among three consecutive elements

Given a permutation P of first N natural numbers. The task is to find the number of elements Pi such that Pi is second smallest among Pi – 1, Pi and Pi + 1.
Examples: 
 

Input: P[] = {2, 5, 1, 3, 4} 
Output:
3 is the only such element.
Input: P[] = {1, 2, 3, 4} 
Output:
 

 

Approach: Traverse the permutation from 1 to N – 2 ( zero-based indexing) and check the below two conditions. If anyone of these conditions satisfy then increment the required answer. 
 

  • If P[i – 1] < P[i] < P[i + 1].
  • If P[i – 1] > P[i] > P[i + 1].

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of elements
// P[i] such that P[i] is the second smallest
// among P[i – 1], P[i] and P[i + 1]
int countElements(int p[], int n)
{
    // To store the required answer
    int ans = 0;
 
    // Traverse from the second element
    // to the second last element
    for (int i = 1; i < n - 1; i++) {
        if (p[i - 1] > p[i] and p[i] > p[i + 1])
            ans++;
        else if (p[i - 1] < p[i] and p[i] < p[i + 1])
            ans++;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int p[] = { 2, 5, 1, 3, 4 };
    int n = sizeof(p) / sizeof(p[0]);
 
    cout << countElements(p, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the count of elements
// P[i] such that P[i] is the second smallest
// among P[i-1], P[i] and P[i + 1]
static int countElements(int p[], int n)
{
    // To store the required answer
    int ans = 0;
 
    // Traverse from the second element
    // to the second last element
    for (int i = 1; i < n - 1; i++)
    {
        if (p[i - 1] > p[i] && p[i] > p[i + 1])
            ans++;
        else if (p[i - 1] < p[i] && p[i] < p[i + 1])
            ans++;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void main(String []args)
{
    int p[] = { 2, 5, 1, 3, 4 };
    int n = p.length;
 
    System.out.println(countElements(p, n));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
 
# Function to return the count of elements
# P[i] such that P[i] is the second smallest
# among P[i – 1], P[i] and P[i + 1]
def countElements(p, n) :
 
    # To store the required answer
    ans = 0;
 
    # Traverse from the second element
    # to the second last element
    for i in range(1, n - 1) :
         
        if (p[i - 1] > p[i] and p[i] > p[i + 1]) :
            ans += 1;
        elif (p[i - 1] < p[i] and p[i] < p[i + 1]) :
            ans += 1;
     
    # Return the required answer
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    p = [ 2, 5, 1, 3, 4 ];
    n = len(p);
 
    print(countElements(p, n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the count of elements
// P[i] such that P[i] is the second smallest
// among P[i-1], P[i] and P[i + 1]
static int countElements(int []p, int n)
{
    // To store the required answer
    int ans = 0;
 
    // Traverse from the second element
    // to the second last element
    for (int i = 1; i < n - 1; i++)
    {
        if (p[i - 1] > p[i] && p[i] > p[i + 1])
            ans++;
        else if (p[i - 1] < p[i] && p[i] < p[i + 1])
            ans++;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void Main(String []args)
{
    int []p = { 2, 5, 1, 3, 4 };
    int n = p.Length;
 
    Console.WriteLine(countElements(p, n));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the count of elements
// P[i] such that P[i] is the second smallest
// among P[i-1], P[i] and P[i + 1]
    function countElements(p , n)
    {
        // To store the required answer
        var ans = 0;
 
        // Traverse from the second element
        // to the second last element
        for (i = 1; i < n - 1; i++) {
            if (p[i - 1] > p[i] && p[i] > p[i + 1])
                ans++;
            else if (p[i - 1] < p[i] && p[i] < p[i + 1])
                ans++;
        }
 
        // Return the required answer
        return ans;
    }
 
    // Driver code
     
        var p = [ 2, 5, 1, 3, 4 ];
        var n = p.length;
 
        document.write(countElements(p, n));
 
// This code contributed by Rajput-Ji
 
</script>


Output: 

1

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments