Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AICount of elements to be inserted to make Array sum twice the...

Count of elements to be inserted to make Array sum twice the XOR of Array

Given an array arr[] of size N, the task is to find the minimum number of elements that need to be inserted into the array so that the sum of the array is equal to two times the XOR of the array
Examples: 
 

Input: arr[] = {1, 2, 3, 6} 
Output:
Explanation: 
Xor = (1 ^ 2 ^ 3 ^ 6) = 6 and sum of the array = 12. 
The required condition (sum = 2 * Xor) satisfies. So no need to insert more elements.
Input: arr[] = {1, 2, 3} 
Output:
Explanation: 
Xor = (1 ^ 2 ^ 3) = 0 and sum of the array = (1 + 2 + 3) = 6. 
Here, we insert one element {6} into the array. Now, NewXor = (0 ^ 6) = 6 and NewSum = (6 + 6) = 12. 
Hence, NewSum = 2*NewXor. 
So, the given condition satisfies. 
 

 

Approach: The idea is to compute the following steps in order to find the answer: 
 

  • Initially, we find the sum of the array and the XOR of the array.
  • Now, we check if the given condition satisfies or not. If it satisfies, then print 0 as we need not insert any element.
  • Now, check if the XOR is equal to 0 or not. If it is, then the element that needs to be inserted into the array is the sum of all the elements of the array.
  • This is because, by inserting the sum, the new XOR becomes (0 ^ sum = sum) and the sum of the array becomes sum + sum = 2 * sum. Therefore the condition satisfies.
  • Else, we add two more elements which are XOR and (sum + XOR). This is because: 
     

NewXor = (Xor ^ (sum + Xor) ^ Xor) = Sum + Xor. 
NewSum = (Sum + (Sum + Xor) + Xor) = 2 * (Sum + Xor) = 2 * NewXor 
 

Below is the implementation of the above approach:
 

C++




// C++ program to find the count
// of elements to be inserted to
// make Array sum twice the XOR of Array
#include<bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// number of elements that need to be
// inserted such that the sum of the
// elements of the array is twice
// the XOR of the array
void insert_element(int a[], int n)
{
     
    // Variable to store the
    // Xor of all the elements
    int Xor = 0;
 
    // Variable to store the
    // sum of all elements
    int Sum = 0;
     
    // Loop to find the Xor
    // and the sum of the array
    for(int i = 0; i < n; i++)
    
        Xor ^= a[i];
        Sum += a[i];
    }
     
    // If sum = 2 * Xor
    if(Sum == 2 * Xor)
    {
       
        // No need to insert
        // more elements
        cout << "0" << endl;
        return;
     }
   
    // We insert one more element
    // which is Sum
    if(Xor == 0)
    {
        cout << "1" << endl;
        cout << Sum << endl;
        return;
     }
 
    // We insert two more elements
    // Sum + Xor and Xor.
    int num1 = Sum + Xor;
     
    int num2 = Xor;
 
    // Print the number of elements
    // inserted in the array
    cout << "2";
 
    // Print the elements that are
    // inserted in the array
    cout << num1 << " "
         << num2 << endl; 
}
 
// Driver code
int main()
{   
    int a[] = {1, 2, 3};
    int n = sizeof(a) / sizeof(a[0]);
   
    insert_element(a, n);
}
 
// This code is contributed by chitranayal


Java




// Java program to find the count
// of elements to be inserted to
// make Array sum twice the XOR of Array
class GFG{
  
// Function to find the minimum
// number of elements that need to be
// inserted such that the sum of the
// elements of the array is twice
// the XOR of the array
static void insert_element(int a[], int n)
{
      
    // Variable to store the
    // Xor of all the elements
    int Xor = 0;
  
    // Variable to store the
    // sum of all elements
    int Sum = 0;
      
    // Loop to find the Xor
    // and the sum of the array
    for(int i = 0; i < n; i++)
    
        Xor ^= a[i];
        Sum += a[i];
    }
      
    // If sum = 2 * Xor
    if(Sum == 2 * Xor)
    {
        
        // No need to insert
        // more elements
        System.out.println("0");
        return;
     }
    
    // We insert one more element
    // which is Sum
    if(Xor == 0)
    {
        System.out.println("1");
        System.out.println(Sum);
        return;
     }
  
    // We insert two more elements
    // Sum + Xor and Xor.
    int num1 = Sum + Xor;
      
    int num2 = Xor;
  
    // Print the number of elements
    // inserted in the array
    System.out.print("2");
  
    // Print the elements that are
    // inserted in the array
    System.out.println(num1 + " " + num2);
}
  
// Driver code
public static void main(String[] args)
{   
    int a[] = {1, 2, 3};
    int n = a.length;
    
    insert_element(a, n);
}
}
 
// This code is contributed by rock_cool


Python3




# Python program to find the count
# of elements to be inserted to
# make Array sum twice the XOR of Array
 
# Function to find the minimum
# number of elements that need to be
# inserted such that the sum of the
# elements of the array is twice
# the XOR of the array
def insert_element(a, n):
     
    # Variable to store the
    # Xor of all the elements
    Xor = 0
 
    # Variable to store the
    # sum of all elements
    Sum = 0
     
    # Loop to find the Xor
    # and the sum of the array
    for i in range(n):
         
        Xor^= a[i]
        Sum+= a[i]
     
    # If sum = 2 * Xor
    if(Sum == 2 * Xor):
 
        # No need to insert
        # more elements
        print(0)
        return
 
    # We insert one more element
    # which is Sum
    if(Xor == 0):
        print(1)
        print(Sum)
        return
 
    # We insert two more elements
    # Sum + Xor and Xor.
    num1 = Sum + Xor
     
    num2 = Xor
 
    # Print the number of elements
    # inserted in the array
    print(2)
 
    # Print the elements that are
    # inserted in the array
    print(num1, num2)
     
         
# Driver code
if __name__ == "__main__":
     
    a = [1, 2, 3]
    n = len(a)
    insert_element(a, n)


C#




// C# program to find the count
// of elements to be inserted to
// make Array sum twice the XOR of Array
using System;
class GFG{
   
// Function to find the minimum
// number of elements that need to be
// inserted such that the sum of the
// elements of the array is twice
// the XOR of the array
static void insert_element(int[] a, int n)
{
       
    // Variable to store the
    // Xor of all the elements
    int Xor = 0;
   
    // Variable to store the
    // sum of all elements
    int Sum = 0;
       
    // Loop to find the Xor
    // and the sum of the array
    for(int i = 0; i < n; i++)
    
        Xor ^= a[i];
        Sum += a[i];
    }
       
    // If sum = 2 * Xor
    if(Sum == 2 * Xor)
    {
         
        // No need to insert
        // more elements
        Console.Write("0");
        return;
     }
     
    // We insert one more element
    // which is Sum
    if(Xor == 0)
    {
        Console.Write("1" + '\n');
        Console.Write(Sum);
        return;
     }
   
    // We insert two more elements
    // Sum + Xor and Xor.
    int num1 = Sum + Xor;
       
    int num2 = Xor;
   
    // Print the number of elements
    // inserted in the array
    Console.Write("2");
   
    // Print the elements that are
    // inserted in the array
    Console.Write(num1 + " " + num2);
}
   
// Driver code
public static void Main(string[] args)
{   
    int[] a = {1, 2, 3};
    int n = a.Length;
     
    insert_element(a, n);
}
}
  
// This code is contributed by Ritik Bansal


Javascript




<script>
 
    // Javascript program to find the count
    // of elements to be inserted to
    // make Array sum twice the XOR of Array
     
    // Function to find the minimum
    // number of elements that need to be
    // inserted such that the sum of the
    // elements of the array is twice
    // the XOR of the array
    function insert_element(a, n)
    {
 
        // Variable to store the
        // Xor of all the elements
        let Xor = 0;
 
        // Variable to store the
        // sum of all elements
        let Sum = 0;
 
        // Loop to find the Xor
        // and the sum of the array
        for(let i = 0; i < n; i++)
        {
            Xor ^= a[i];
            Sum += a[i];
        }
 
        // If sum = 2 * Xor
        if(Sum == 2 * Xor)
        {
 
            // No need to insert
            // more elements
            document.write("0" + "</br>");
            return;
         }
 
        // We insert one more element
        // which is Sum
        if(Xor == 0)
        {
            document.write("1" + "</br>");
            document.write(Sum + "</br>");
            return;
         }
 
        // We insert two more elements
        // Sum + Xor and Xor.
        let num1 = Sum + Xor;
 
        let num2 = Xor;
 
        // Print the number of elements
        // inserted in the array
        document.write("2" + "</br>");
 
        // Print the elements that are
        // inserted in the array
        document.write(num1 + " " + num2 + "</br>");
    }
 
    let a = [1, 2, 3];
    let n = a.length;
    
    insert_element(a, n);
     
</script>


Output: 

1
6

 

Time Complexity : O(n) ,as we are traversing once in an array.

Space Complexity : O(1) ,as we are not using any extra space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments