Monday, January 13, 2025
Google search engine
HomeData Modelling & AICount of divisors of product of an Array in range L to...

Count of divisors of product of an Array in range L to R for Q queries

Given an array arr of size N and Q queries of the form [L, R], the task is to find the number of divisors of the product of this array in the given range.
Note: The ranges are 1-positioned.
Constraints: 1<= N, Q <= 105, 1<= arr[i] <= 106.

Examples:  

Input: arr[] = {4, 1, 9, 12, 5, 3}, Q = {{1, 3}, {3, 5}} 
Output:
24

Input: arr[] = {5, 2, 3, 1, 4}, Q = {{2, 4}, {1, 5}} 
Output:
16 

Brute force:  

  1. For every Query, iterate array from L to R and calculate the product of elements in the given range.
  2. Calculate the total number of divisors of that product.

Time Complexity: Q * N * (log (N)) 

Efficient Approach: The idea is to use Segment Tree to solve this problem. 

  1. We can’t store the product of array from L to R because of the constraints so we can store the power of prime in segment tree.
  2. For every query, we merge the trees according to the query.

Construction of Segment Tree from given array  

  • We start with a segment arr[0 . . . n-1].
  • Every time we divide the current segment into two halves, if it has not yet become a segment of length 1.
  • Then call the same procedure on both halves, and for each such segment, we store the power of primes in the corresponding node.
  • All levels of the constructed segment tree will be completely filled except the last level.
  • Also, the tree will be a Full Binary Tree because we always divide segments into two halves at every level.
  • Since the constructed tree is always a full binary tree with n leaves, there will be n-1 internal nodes. So the total number of nodes will be 2*n – 1.

Below is the implementation of the above approach. 

C++




#include <bits/stdc++.h>
using namespace std;
#define ll long long int
#define MOD 1000000007
 
#define MAXN 1000001
 
// Array to store the precomputed prime numbers
int spf[MAXN];
 
// Function signatures
void merge(
    vector<pair<int, int> > tree[], int treeIndex);
void sieve();
vector<int> getFactorization(
    int x);
void buildTree(
    vector<pair<int, int> > tree[], int treeIndex,
    int start, int end, int arr[]);
int query(
    vector<pair<int, int> > tree[], int treeIndex,
    int start, int end,
    int left, int right);
vector<pair<int, int> > mergeUtil(
    vector<pair<int, int> > op1,
    vector<pair<int, int> > op2);
vector<pair<int, int> > queryUtil(
    vector<pair<int, int> > tree[], int treeIndex,
    int start, int end,
    int left, int right);
 
// Function to use Sieve to compute
// and store prime numbers
void sieve()
{
    spf[1] = 1;
    for (int i = 2; i < MAXN; i++)
        spf[i] = i;
 
    for (int i = 4; i < MAXN; i += 2)
        spf[i] = 2;
 
    for (int i = 3; i * i < MAXN; i++) {
        if (spf[i] == i) {
            for (int j = i * i; j < MAXN; j += i)
                if (spf[j] == j)
                    spf[j] = i;
        }
    }
}
 
// Function to find the
// prime factors of a value
vector<int> getFactorization(int x)
{
 
    // Vector to store the prime factors
    vector<int> ret;
 
    // For every prime factor of x,
    // push it to the vector
    while (x != 1) {
 
        ret.push_back(spf[x]);
        x = x / spf[x];
    }
 
    // Return the prime factors
    return ret;
}
 
// Recursive function to build segment tree
// by merging the power of primes
void buildTree(vector<pair<int, int> > tree[],
               int treeIndex, int start,
               int end, int arr[])
{
 
    // Base case
    if (start == end) {
 
        int val = arr[start];
        vector<int> primeFac
            = getFactorization(val);
 
        for (auto it : primeFac) {
            int power = 0;
            while (val % it == 0) {
                val = val / it;
                power++;
            }
 
            // Storing powers of prime
            // in tree at treeIndex
            tree[treeIndex]
                .push_back({ it, power });
        }
        return;
    }
 
    int mid = (start + end) / 2;
 
    // Building the left tree
    buildTree(tree, 2 * treeIndex, start,
              mid, arr);
 
    // Building the right tree
    buildTree(tree, 2 * treeIndex + 1,
              mid + 1, end, arr);
 
    // Merges the right tree and left tree
    merge(tree, treeIndex);
 
    return;
}
 
// Function to merge the right
// and the left tree
void merge(vector<pair<int, int> > tree[],
           int treeIndex)
{
    int index1 = 0;
    int index2 = 0;
    int len1 = tree[2 * treeIndex].size();
    int len2 = tree[2 * treeIndex + 1].size();
 
    // Fill this array in such a way such that values
    // of prime remain sorted similar to mergesort
    while (index1 < len1 && index2 < len2) {
 
        // If both of the elements are same
        if (tree[2 * treeIndex][index1].first
            == tree[2 * treeIndex + 1][index2].first) {
 
            tree[treeIndex].push_back(
                { tree[2 * treeIndex][index1].first,
                  tree[2 * treeIndex][index1].second
                      + tree[2 * treeIndex + 1]
                            [index2]
                                .second });
            index1++;
            index2++;
        }
 
        // If the element on the left part
        // is greater than the right part
        else if (tree[2 * treeIndex][index1].first
                 > tree[2 * treeIndex + 1][index2].first) {
 
            tree[treeIndex].push_back(
                { tree[2 * treeIndex + 1][index2].first,
                  tree[2 * treeIndex + 1][index2].second });
            index2++;
        }
 
        // If the element on the left part
        // is less than the right part
        else {
            tree[treeIndex].push_back(
                { tree[2 * treeIndex][index1].first,
                  tree[2 * treeIndex][index1].second });
            index1++;
        }
    }
 
    // Insert the leftover elements
    // from the left part
    while (index1 < len1) {
        tree[treeIndex].push_back(
            { tree[2 * treeIndex][index1].first,
              tree[2 * treeIndex][index1].second });
        index1++;
    }
 
    // Insert the leftover elements
    // from the right part
    while (index2 < len2) {
        tree[treeIndex].push_back(
            { tree[2 * treeIndex + 1][index2].first,
              tree[2 * treeIndex + 1][index2].second });
        index2++;
    }
    return;
}
 
// Function similar to merge() method
// But here it takes two vectors and
// return a vector of power of primes
vector<pair<int, int> > mergeUtil(
    vector<pair<int, int> > op1,
    vector<pair<int, int> > op2)
{
    int index1 = 0;
    int index2 = 0;
    int len1 = op1.size();
    int len2 = op2.size();
    vector<pair<int, int> > res;
 
    while (index1 < len1 && index2 < len2) {
 
        if (op1[index1].first == op2[index2].first) {
            res.push_back({ op1[index1].first,
                            op1[index1].second
                                + op2[index2].second });
            index1++;
            index2++;
        }
 
        else if (op1[index1].first > op2[index2].first) {
            res.push_back({ op2[index2].first,
                            op2[index2].second });
            index2++;
        }
        else {
            res.push_back({ op1[index1].first,
                            op1[index1].second });
            index1++;
        }
    }
    while (index1 < len1) {
        res.push_back({ op1[index1].first,
                        op1[index1].second });
        index1++;
    }
    while (index2 < len2) {
        res.push_back({ op2[index2].first,
                        op2[index2].second });
        index2++;
    }
    return res;
}
 
// Function similar to query() method
// as in segment tree
// Here also the result is merged
vector<pair<int, int> > queryUtil(
    vector<pair<int, int> > tree[],
    int treeIndex, int start,
    int end, int left, int right)
{
    if (start > right || end < left) {
        tree[0].clear();
        return tree[0];
    }
    if (start >= left && end <= right) {
        return tree[treeIndex];
    }
    int mid = (start + end) / 2;
 
    vector<pair<int, int> > op1
        = queryUtil(tree, 2 * treeIndex,
                    start, mid,
                    left, right);
    vector<pair<int, int> > op2
        = queryUtil(tree, 2 * treeIndex + 1,
                    mid + 1, end,
                    left, right);
 
    return mergeUtil(op1, op2);
}
 
// Function to return the number of divisors
// of product of array from left to right
int query(vector<pair<int, int> > tree[],
          int treeIndex, int start,
          int end, int left, int right)
{
    vector<pair<int, int> > res
        = queryUtil(tree, treeIndex,
                    start, end,
                    left, right);
 
    int sum = 1;
    for (auto it : res) {
        sum *= (it.second + 1);
        sum %= MOD;
    }
    return sum;
}
 
// Function to solve queries
void solveQueries(
    int arr[], int len,
    int l, int r)
{
 
    // Calculate the size of segment tree
    int x = (int)(ceil(log2(len)));
 
    // Maximum size of segment tree
    int max_size = 2 * (int)pow(2, x) - 1;
 
    // first of pair is used to store the prime
    // second of pair is use to store its power
    vector<pair<int, int> > tree[max_size];
 
    // building the tree
    buildTree(tree, 1, 0, len - 1, arr);
 
    // Find the required number of divisors
    // of product of array from l to r
    cout << query(tree, 1, 0,
                  len - 1, l - 1, r - 1)
         << endl;
}
 
// Driver code
int main()
{
 
    // Precomputing the prime numbers using sieve
    sieve();
 
    int arr[] = { 5, 2, 3, 1, 4 };
    int len = sizeof(arr) / sizeof(arr[0]);
    int queries = 2;
    int Q[queries][2] = { { 2, 4 }, { 1, 5 } };
 
    // Solve the queries
    for (int i = 0; i < queries; i++) {
        solveQueries(arr, len, Q[i][0], Q[i][1]);
    }
    return 0;
}


Java




import java.util.ArrayList;
 
public class Main {
    static final int MOD = 1000000007;
    static final int MAXN = 1000001;
 
    // Array to store the precomputed prime numbers
    static int[] spf = new int[MAXN];
 
    // Function to use Sieve to compute
    // and store prime numbers
    static void sieve()
    {
        spf[1] = 1;
        for (int i = 2; i < MAXN; i++) {
            spf[i] = i;
        }
 
        for (int i = 4; i < MAXN; i += 2) {
            spf[i] = 2;
        }
 
        for (int i = 3; i * i < MAXN; i++) {
            if (spf[i] == i) {
                for (int j = i * i; j < MAXN; j += i) {
                    if (spf[j] == j) {
                        spf[j] = i;
                    }
                }
            }
        }
    }
 
    // Function to find the prime factors of a value
    static ArrayList<Integer> getFactorization(int x)
    {
        ArrayList<Integer> ret = new ArrayList<>();
        while (x != 1) {
            ret.add(spf[x]);
            x /= spf[x];
        }
        return ret;
    }
 
    // Function to merge the right and left tree
    static void merge(ArrayList<int[]>[] tree,
                      int treeIndex)
    {
        int index1 = 0;
        int index2 = 0;
        int len1 = tree[2 * treeIndex].size();
        int len2 = tree[2 * treeIndex + 1].size();
 
        ArrayList<int[]> mergedAns = new ArrayList<>();
 
        while (index1 < len1 && index2 < len2) {
            if (tree[2 * treeIndex].get(index1)[0]
                == tree[2 * treeIndex + 1].get(index2)[0]) {
                int[] temp
                    = { tree[2 * treeIndex].get(index1)[0],
                        (tree[2 * treeIndex].get(index1)[1]
                         + tree[2 * treeIndex + 1].get(
                             index2)[1])
                            % MOD };
                mergedAns.add(temp);
                index1++;
                index2++;
            }
            else if (tree[2 * treeIndex].get(index1)[0]
                     < tree[2 * treeIndex + 1].get(
                         index2)[0]) {
                mergedAns.add(
                    tree[2 * treeIndex].get(index1));
                index1++;
            }
            else {
                mergedAns.add(
                    tree[2 * treeIndex + 1].get(index2));
                index2++;
            }
        }
 
        while (index1 < len1) {
            mergedAns.add(tree[2 * treeIndex].get(index1));
            index1++;
        }
 
        while (index2 < len2) {
            mergedAns.add(
                tree[2 * treeIndex + 1].get(index2));
            index2++;
        }
 
        tree[treeIndex] = mergedAns;
    }
 
    // Recursive function to build a segment tree
    static void buildTree(ArrayList<int[]>[] tree,
                          int treeIndex, int start, int end,
                          int[] arr)
    {
        if (start == end) {
            int val = arr[start];
            ArrayList<Integer> primeFac
                = getFactorization(val);
 
            for (int it : primeFac) {
                int power = 0;
                while (val % it == 0) {
                    val = val / it;
                    power++;
                }
                int[] temp = { it, power };
                tree[treeIndex].add(temp);
            }
            return;
        }
 
        int mid = (start + end) / 2;
 
        buildTree(tree, 2 * treeIndex, start, mid, arr);
        buildTree(tree, 2 * treeIndex + 1, mid + 1, end,
                  arr);
        merge(tree, treeIndex);
    }
 
    // Function to return the number of divisors
    // of a product of an array from left to right
    static int query(ArrayList<int[]>[] tree, int treeIndex,
                     int start, int end, int left,
                     int right)
    {
        ArrayList<int[]> res = queryUtil(
            tree, treeIndex, start, end, left, right);
 
        int sum = 1;
        for (int[] it : res) {
            sum *= (it[1] + 1);
            sum %= MOD;
        }
        return sum;
    }
 
    // Function similar to merge() method
    // But here it takes two vectors and
    // returns a vector of the power of primes
    static ArrayList<int[]> mergeUtil(ArrayList<int[]> op1,
                                      ArrayList<int[]> op2)
    {
        int index1 = 0;
        int index2 = 0;
        int len1 = op1.size();
        int len2 = op2.size();
        ArrayList<int[]> mergedAns = new ArrayList<>();
 
        while (index1 < len1 && index2 < len2) {
            if (op1.get(index1)[0] == op2.get(index2)[0]) {
                int[] temp = { op1.get(index1)[0],
                               (op1.get(index1)[1]
                                + op2.get(index2)[1])
                                   % MOD };
                mergedAns.add(temp);
                index1++;
                index2++;
            }
            else if (op1.get(index1)[0]
                     < op2.get(index2)[0]) {
                mergedAns.add(op1.get(index1));
                index1++;
            }
            else {
                mergedAns.add(op2.get(index2));
                index2++;
            }
        }
 
        while (index1 < len1) {
            mergedAns.add(op1.get(index1));
            index1++;
        }
 
        while (index2 < len2) {
            mergedAns.add(op2.get(index2));
            index2++;
        }
 
        return mergedAns;
    }
 
    // Function to merge the right
    // and the left tree
    static ArrayList<int[]>
    queryUtil(ArrayList<int[]>[] tree, int treeIndex,
              int start, int end, int left, int right)
    {
        if (left > end || right < start) {
            return new ArrayList<>();
        }
 
        if (left <= start && end <= right) {
            return tree[treeIndex];
        }
 
        int mid = (start + end) / 2;
        ArrayList<int[]> op1 = queryUtil(
            tree, 2 * treeIndex, start, mid, left, right);
        ArrayList<int[]> op2
            = queryUtil(tree, 2 * treeIndex + 1, mid + 1,
                        end, left, right);
 
        return mergeUtil(op1, op2);
    }
 
    // Function to solve queries
    static void solveQueries(int[] arr, int len, int l,
                             int r)
    {
        int x = (int)Math.ceil(Math.log(len) / Math.log(2));
        int max_size = 2 * (int)Math.pow(2, x) - 1;
        ArrayList<int[]>[] tree = new ArrayList[max_size];
        for (int i = 0; i < tree.length; i++) {
            tree[i] = new ArrayList<>();
        }
 
        buildTree(tree, 1, 0, len - 1, arr);
        System.out.println(
            query(tree, 1, 0, len - 1, l - 1, r - 1));
    }
 
    public static void main(String[] args)
    {
        // Precomputing the prime numbers using sieve
        sieve();
 
        int[] arr = { 5, 2, 3, 1, 4 };
        int len = arr.length;
        int queries = 2;
        int[][] Q = { { 2, 4 }, { 1, 5 } };
 
        // Solve the queries
        for (int i = 0; i < queries; i++) {
            solveQueries(arr, len, Q[i][0], Q[i][1]);
        }
    }
}


Python3




from typing import List, Tuple
from math import ceil, log2, pow
import sys
 
sys.setrecursionlimit(10000)
 
MOD = 1000000007
 
MAXN = 1000001
 
# Array to store the precomputed prime numbers
spf = [0 for _ in range(MAXN)]
 
# Function to use Sieve to compute
# and store prime numbers
def sieve() -> None:
 
    spf[1] = 1
    for i in range(2, MAXN):
        spf[i] = i
 
    for i in range(4, MAXN, 2):
        spf[i] = 2
 
    i = 3
     
    while i * i < MAXN:
        if (spf[i] == i):
            for j in range(i * i, MAXN, i):
                if (spf[j] == j):
                    spf[j] = i
                     
        i += 1
 
# Function to find the
# prime factors of a value
def getFactorization(x: int) -> List[int]:
 
    # Vector to store the prime factors
    ret = []
 
    # For every prime factor of x,
    # push it to the vector
    while (x != 1):
 
        ret.append(spf[x])
        x = x // spf[x]
 
    # Return the prime factors
    return ret
 
 
# Recursive function to build segment tree
# by merging the power pf primes
def buildTree(tree: List[List[Tuple[int]]], treeIndex: int,
              start: int, end: int, arr: List[int]) -> None:
 
    # Base case
    if (start == end):
        val = arr[start]
        primeFac = getFactorization(val)
 
        for it in primeFac:
            power = 0
             
            while (val % it == 0):
                val = val // it
                power += 1
 
            # Storing powers of prime
            # in tree at treeIndex
            tree[treeIndex].append((it, power))
 
        return
 
    mid = (start + end) // 2
 
    # Building the left tree
    buildTree(tree, 2 * treeIndex, start, mid, arr)
 
    # Building the right tree
    buildTree(tree, 2 * treeIndex + 1, mid + 1, end, arr)
 
    # Merges the right tree and left tree
    merge(tree, treeIndex)
 
    return
 
# Function to merge the right
# and the left tree
def merge(tree: List[List[Tuple[int]]], treeIndex: int) -> None:
 
    index1 = 0
    index2 = 0
    len1 = len(tree[2 * treeIndex])
    len2 = len(tree[2 * treeIndex + 1])
 
    # Fill this array in such a way such that values
    # of prime remain sorted similar to mergesort
    while (index1 < len1 and index2 < len2):
 
        # If both of the elements are same
        if (tree[2 * treeIndex][index1][0] ==
            tree[2 * treeIndex + 1][index2][0]):
            tree[treeIndex].append((tree[2 * treeIndex][index1][0],
                                    tree[2 * treeIndex][index1][1] +
                                    tree[2 * treeIndex + 1][index2][1]))
            index1 += 1
            index2 += 1
 
        # If the element on the left part
        # is greater than the right part
        elif (tree[2 * treeIndex][index1][0] >
              tree[2 * treeIndex + 1][index2][0]):
 
            tree[treeIndex].append((tree[2 * treeIndex + 1][index2][0],
                                    tree[2 * treeIndex + 1][index2][1]))
            index2 += 1
 
        # If the element on the left part
        # is less than the right part
        else:
            tree[treeIndex].append((tree[2 * treeIndex][index1][0],
                                    tree[2 * treeIndex][index1][1]))
            index1 += 1
 
    # Insert the leftover elements
    # from the left part
    while (index1 < len1):
        tree[treeIndex].append(
            (tree[2 * treeIndex][index1][0],
             tree[2 * treeIndex][index1][1]))
        index1 += 1
 
    # Insert the leftover elements
    # from the right part
    while (index2 < len2):
        tree[treeIndex].append((tree[2 * treeIndex + 1][index2][0],
                                tree[2 * treeIndex + 1][index2][1]))
        index2 += 1
 
    return
 
# Function similar to merge() method
# But here it takes two vectors and
# return a vector of power of primes
def mergeUtil(op1: List[Tuple[int]],
              op2: List[Tuple[int]]) -> List[Tuple[int]]:
 
    index1 = 0
    index2 = 0
    len1 = len(op1)
    len2 = len(op2)
    res = []
 
    while (index1 < len1 and index2 < len2):
        if (op1[index1][0] == op2[index2][0]):
            res.append((op1[index1][0],
                       (op1[index1][1] +
                        op2[index2][1])))
            index1 += 1
            index2 += 1
 
        elif (op1[index1][0] > op2[index2][0]):
            res.append((op2[index2][0], op2[index2][1]))
            index2 += 1
 
        else:
            res.append((op1[index1][0], op1[index1][1]))
            index1 += 1
 
    while (index1 < len1):
        res.append((op1[index1][0], op1[index1][1]))
        index1 += 1
 
    while (index2 < len2):
        res.append((op2[index2][0], op2[index2][1]))
        index2 += 1
 
    return res
 
# Function similar to query() method
# as in segment tree
# Here also the result is merged
def queryUtil(tree: List[List[Tuple[int]]], treeIndex: int,
              start: int,end: int, left: int,
              right: int) -> List[Tuple[int]]:
 
    if (start > right or end < left):
        tree[0].clear()
        return tree[0]
 
    if (start >= left and end <= right):
        return tree[treeIndex]
 
    mid = (start + end) // 2
 
    op1 = queryUtil(tree, 2 * treeIndex, start,
                    mid, left, right)
    op2 = queryUtil(tree, 2 * treeIndex + 1, mid + 1,
                    end, left, right)
 
    return mergeUtil(op1, op2)
 
# Function to return the number of divisors
# of product of array from left to right
def query(tree: List[List[Tuple[int]]], treeIndex: int,
          start: int, end: int, left: int, right: int) -> int:
 
    res = queryUtil(tree, treeIndex, start, end, left, right)
 
    sum = 1
    for it in res:
        sum *= (it[1] + 1)
        sum %= MOD
 
    return sum
 
# Function to solve queries
def solveQueries(arr: List[int], length: int,
                 l: int, r: int) -> None:
 
    # Calculate the size of segment tree
    x = int(ceil(log2(length)))
 
    # Maximum size of segment tree
    max_size = 2 * int(pow(2, x)) - 1
 
    # First of pair is used to store the prime
    # second of pair is use to store its power
    tree = [[] for _ in range(max_size)]
 
    # building the tree
    buildTree(tree, 1, 0, length - 1, arr)
 
    # Find the required number of divisors
    # of product of array from l to r
    print(query(tree, 1, 0, length - 1, l - 1, r - 1))
 
# Driver code
if __name__ == "__main__":
 
    # Precomputing the prime numbers using sieve
    sieve()
 
    arr = [ 5, 2, 3, 1, 4 ]
    length = len(arr)
    queries = 2
    Q = [ [ 2, 4 ], [ 1, 5 ] ]
 
    # Solve the queries
    for i in range(queries):
        solveQueries(arr, length, Q[i][0], Q[i][1])
 
# This code is contributed by sanjeev2552


C#




using System;
using System.Collections.Generic;
 
class GFG {
    // Constants for maximum array size and MOD value
    const int MAXN = 1000001;
    const int MOD = 1000000007;
 
    // Array to store the precomputed prime numbers
    static int[] spf = new int[MAXN];
 
    // Function to use Sieve to compute
    // and store prime numbers
    static void Sieve()
    {
        spf[1] = 1;
        for (int i = 2; i < MAXN; i++)
            spf[i] = i;
 
        for (int i = 4; i < MAXN; i += 2)
            spf[i] = 2;
 
        for (int i = 3; i * i < MAXN; i++) {
            if (spf[i] == i) {
                for (int j = i * i; j < MAXN; j += i) {
                    if (spf[j] == j)
                        spf[j] = i;
                }
            }
        }
    }
 
    // Function to find the prime factors of a value
    static List<int> GetFactorization(int x)
    {
        List<int> ret = new List<int>();
 
        while (x != 1) {
            ret.Add(spf[x]);
            x = x / spf[x];
        }
 
        return ret;
    }
 
    // Recursive function to build segment tree by merging
    // the power of primes
    static void BuildTree(List<Tuple<int, int> >[] tree,
                          int treeIndex, int start, int end,
                          int[] arr)
    {
        if (start == end) {
            int val = arr[start];
            List<int> primeFac = GetFactorization(val);
 
            foreach(int it in primeFac)
            {
                int power = 0;
                while (val % it == 0) {
                    val = val / it;
                    power++;
                }
 
                tree[treeIndex].Add(
                    Tuple.Create(it, power));
            }
            return;
        }
 
        int mid = (start + end) / 2;
 
        BuildTree(tree, 2 * treeIndex, start, mid, arr);
        BuildTree(tree, 2 * treeIndex + 1, mid + 1, end,
                  arr);
 
        Merge(tree, treeIndex);
    }
 
    // Function to merge the right and the left tree
    static void Merge(List<Tuple<int, int> >[] tree,
                      int treeIndex)
    {
        int index1 = 0;
        int index2 = 0;
        int len1 = tree[2 * treeIndex].Count;
        int len2 = tree[2 * treeIndex + 1].Count;
        List<Tuple<int, int> > merged
            = new List<Tuple<int, int> >();
 
        while (index1 < len1 && index2 < len2) {
            if (tree[2 * treeIndex][index1].Item1
                == tree[2 * treeIndex + 1][index2].Item1) {
                merged.Add(Tuple.Create(
                    tree[2 * treeIndex][index1].Item1,
                    tree[2 * treeIndex][index1].Item2
                        + tree[2 * treeIndex + 1][index2]
                              .Item2));
                index1++;
                index2++;
            }
            else if (tree[2 * treeIndex][index1].Item1
                     > tree[2 * treeIndex + 1][index2]
                           .Item1) {
                merged.Add(Tuple.Create(
                    tree[2 * treeIndex + 1][index2].Item1,
                    tree[2 * treeIndex + 1][index2].Item2));
                index2++;
            }
            else {
                merged.Add(Tuple.Create(
                    tree[2 * treeIndex][index1].Item1,
                    tree[2 * treeIndex][index1].Item2));
                index1++;
            }
        }
 
        while (index1 < len1) {
            merged.Add(Tuple.Create(
                tree[2 * treeIndex][index1].Item1,
                tree[2 * treeIndex][index1].Item2));
            index1++;
        }
 
        while (index2 < len2) {
            merged.Add(Tuple.Create(
                tree[2 * treeIndex + 1][index2].Item1,
                tree[2 * treeIndex + 1][index2].Item2));
            index2++;
        }
 
        tree[treeIndex] = merged;
    }
 
    // Function to return the number of divisors of product
    // of array from left to right
    static int Query(List<Tuple<int, int> >[] tree,
                     int treeIndex, int start, int end,
                     int left, int right)
    {
        List<Tuple<int, int> > result = QueryUtil(
            tree, treeIndex, start, end, left, right);
        int sum = 1;
        foreach(Tuple<int, int> it in result)
        {
            sum *= (it.Item2 + 1);
            sum %= MOD;
        }
        return sum;
    }
 
    // Function similar to query() method as in the segment
    // tree
    static List<Tuple<int, int> >
    QueryUtil(List<Tuple<int, int> >[] tree, int treeIndex,
              int start, int end, int left, int right)
    {
        if (start > right || end < left) {
            tree[0].Clear();
            return tree[0];
        }
        if (start >= left && end <= right) {
            return tree[treeIndex];
        }
        int mid = (start + end) / 2;
 
        List<Tuple<int, int> > op1 = QueryUtil(
            tree, 2 * treeIndex, start, mid, left, right);
        List<Tuple<int, int> > op2
            = QueryUtil(tree, 2 * treeIndex + 1, mid + 1,
                        end, left, right);
 
        return MergeUtil(op1, op2);
    }
 
    // Function similar to merge() method but here it takes
    // two lists and returns a list of power of primes
    static List<Tuple<int, int> >
    MergeUtil(List<Tuple<int, int> > op1,
              List<Tuple<int, int> > op2)
    {
        int index1 = 0;
        int index2 = 0;
        int len1 = op1.Count;
        int len2 = op2.Count;
        List<Tuple<int, int> > res
            = new List<Tuple<int, int> >();
 
        while (index1 < len1 && index2 < len2) {
            if (op1[index1].Item1 == op2[index2].Item1) {
                res.Add(Tuple.Create(
                    op1[index1].Item1,
                    op1[index1].Item2 + op2[index2].Item2));
                index1++;
                index2++;
            }
            else if (op1[index1].Item1
                     > op2[index2].Item1) {
                res.Add(Tuple.Create(op2[index2].Item1,
                                     op2[index2].Item2));
                index2++;
            }
            else {
                res.Add(Tuple.Create(op1[index1].Item1,
                                     op1[index1].Item2));
                index1++;
            }
        }
 
        while (index1 < len1) {
            res.Add(Tuple.Create(op1[index1].Item1,
                                 op1[index1].Item2));
            index1++;
        }
 
        while (index2 < len2) {
            res.Add(Tuple.Create(op2[index2].Item1,
                                 op2[index2].Item2));
            index2++;
        }
 
        return res;
    }
 
    // Function to solve queries
    static void SolveQueries(int[] arr, int len, int left,
                             int right)
    {
        int x = (int)Math.Ceiling(Math.Log(len, 2));
        int max_size = 2 * (int)Math.Pow(2, x) - 1;
 
        List<Tuple<int, int> >[] tree
            = new List<Tuple<int, int> >[ max_size ];
        for (int i = 0; i < max_size; i++) {
            tree[i] = new List<Tuple<int, int> >();
        }
 
        BuildTree(tree, 1, 0, len - 1, arr);
        Console.WriteLine(Query(tree, 1, 0, len - 1,
                                left - 1, right - 1));
    }
 
    // Driver code
    static void Main()
    {
        // Precomputing the prime numbers using sieve
        Sieve();
 
        int[] arr = { 5, 2, 3, 1, 4 };
        int len = arr.Length;
        int queries = 2;
        int[, ] Q = { { 2, 4 }, { 1, 5 } };
 
        for (int i = 0; i < queries; i++) {
            SolveQueries(arr, len, Q[i, 0], Q[i, 1]);
        }
    }
}


Javascript




    <script>
        //JavaScript code for the above approach
 
        const MOD = 1000000007;
        const MAXN = 1000001;
 
        let spf = new Array(MAXN);
 
        function merge(tree, treeIndex) {
            let index1 = 0;
            let index2 = 0;
            let len1 = tree[2 * treeIndex].length;
            let len2 = tree[2 * treeIndex + 1].length;
 
            while (index1 < len1 && index2 < len2) {
                if (tree[2 * treeIndex][index1][0] === tree[2 * treeIndex + 1][index2][0]) {
                    tree[treeIndex].push([tree[2 * treeIndex][index1][0],
                    (tree[2 * treeIndex][index1][1] + tree[2 * treeIndex + 1][index2][1]) % MOD,
                    ]);
                    index1++;
                    index2++;
                }
                else if (tree[2 * treeIndex][index1][0] < tree[2 * treeIndex + 1][index2][0]) {
                    tree[treeIndex].push(tree[2 * treeIndex][index1]);
                    index1++;
                }
                else {
                    tree[treeIndex].push(tree[2 * treeIndex + 1][index2]);
                    index2++;
                }
            }
 
            while (index1 < len1) {
                tree[treeIndex].push(tree[2 * treeIndex][index1]);
                index1++;
            }
 
            while (index2 < len2) {
                tree[treeIndex].push(tree[2 * treeIndex + 1][index2]);
                index2++;
            }
        }
 
        function sieve() {
            spf[1] = 1;
            for (let i = 2; i < MAXN; i++) {
                spf[i] = i;
            }
 
            for (let i = 4; i < MAXN; i += 2) {
                spf[i] = 2;
            }
 
            for (let i = 3; i * i < MAXN; i++) {
                if (spf[i] === i) {
                    for (let j = i * i; j < MAXN; j += i) {
                        if (spf[j] === j) {
                            spf[j] = i;
                        }
                    }
                }
            }
        }
 
        function getFactorization(x) {
            let ret = [];
 
            while (x !== 1) {
                ret.push(spf[x]);
                x = Math.floor(x / spf[x]);
            }
 
            return ret;
        }
        function buildTree(tree, treeIndex, start, end, arr) {
            if (start === end) {
                let val = arr[start];
                let primeFac = getFactorization(val);
 
                for (let it of primeFac) {
                    let power = 0;
                    while (val % it === 0) {
                        val = Math.floor(val / it);
                        power++;
                    }
 
                    tree[treeIndex].push([it, power]);
                }
                return;
            }
 
            let mid = Math.floor((start + end) / 2);
 
            buildTree(tree, 2 * treeIndex, start, mid, arr);
            buildTree(tree, 2 * treeIndex + 1, mid + 1, end, arr);
            merge(tree, treeIndex);
 
            return;
        }
 
        function query(tree, treeIndex, start, end, left, right) {
            if (left > end || right < start) {
                return [];
            }
 
            if (left <= start && end <= right) {
                return tree[treeIndex];
            }
 
            let mid = Math.floor((start + end) / 2);
            let op1 = query(tree, 2 * treeIndex, start, mid, left, right);
            let op2 = query(tree, 2 * treeIndex + 1, mid + 1, end, left, right);
 
            return mergeUtil(op1, op2);
        }
 
        function mergeUtil(op1, op2) {
            let index1 = 0;
            let index2 = 0;
            let len1 = op1.length;
            let len2 = op2.length;
            let mergedAns = [];
 
            while (index1 < len1 && index2 < len2) {
                if (op1[index1][0] === op2[index2][0]) {
                    mergedAns.push([
                        op1[index1][0],
                        (op1[index1][1] + op2[index2][1]) % MOD,
                    ]);
                    index1++;
                    index2++;
                }
                else if (op1[index1][0] < op2[index2][0]) {
                    mergedAns.push(op1[index1]);
                    index1++;
                }
                else {
                    mergedAns.push(op2[index2]);
                    index2++;
                }
            }
 
            while (index1 < len1) {
                mergedAns.push(op1[index1]);
                index1++;
            }
 
            while (index2 < len2) {
                mergedAns.push(op2[index2]);
                index2++;
            }
 
            return mergedAns;
        }
 
        function queryUtil(tree, treeIndex, start, end, left, right) {
            if (left > end || right < start) {
                return [];
            }
 
            if (left <= start && end <= right) {
                return tree[treeIndex];
            }
 
            let mid = Math.floor((start + end) / 2);
            let op1 = queryUtil(tree, 2 * treeIndex, start, mid, left, right);
            let op2 = queryUtil(tree, 2 * treeIndex + 1, mid + 1, end, left, right);
 
            return mergeUtil(op1, op2);
        }
        function query(tree, treeIndex, start, end, left, right) {
            let res = queryUtil(tree, treeIndex, start, end, left, right);
 
            let sum = 1;
            for (let it of res) {
                sum *= (it[1] + 1);
                sum %= MOD;
            }
            return sum;
        }
 
        function solveQueries(arr, len, l, r) {
            let x = Math.ceil(Math.log2(len));
            let max_size = 2 * Math.pow(2, x) - 1;
            let tree = new Array(max_size);
 
            for (let i = 0; i < tree.length; i++) {
                tree[i] = [];
            }
 
            buildTree(tree, 1, 0, len - 1, arr);
            document.write(query(tree, 1, 0, len - 1, l - 1, r - 1)+"<br>");
        }
 
        sieve();
 
        let arr = [5, 2, 3, 1, 4];
        let len = arr.length;
        let queries = 2;
        let Q = [[2, 4],
        [1, 5],
        ];
 
        for (let i = 0; i < queries; i++) {
            solveQueries(arr, len, Q[i][0], Q[i][1]);
        }
 
 // This code is contributed by Potta Lokesh
</script>


Output

4
16




Time Complexity: Q * (log (N))

Space complexity: O(MAXN+N*log(N))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments