Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of distinct sums that can be obtained by adding prime numbers...

Count of distinct sums that can be obtained by adding prime numbers from given arrays

Given two arrays arr1[] and arr2[]. The task is to count the distinct sums that can be obtained while choosing a prime element from arr1[] and another prime element from arr2[].
Examples: 
 

Input: arr1[] = {2, 3}, arr2[] = {2, 2, 4, 7} 
Output:
All possible prime pairs are (2, 2), (2, 2), (2, 7), (3, 2), (3, 2) 
and (3, 7) with sums 4, 4, 9, 5, 5 and 10 respectively.
Input: arr1[] = {3, 1, 4, 2, 5}, arr2[] = {8, 7, 10, 6, 5} 
Output:
 

 

Approach: Use Sieve of Eratosthenes to check whether a number is prime or not then for every prime pair, store it’s sum in a set in order to avoid duplicates. The size of the final set will be the required answer.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define MAX 1000000
using namespace std;
 
bool prime[MAX];
void sieve()
{
    memset(prime, true, sizeof(prime));
    prime[0] = prime[1] = false;
    for (int p = 2; p * p <= MAX; p++) {
        if (prime[p] == true) {
            for (int i = p * p; i <= MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the distinct sums
// that can be obtained by adding prime
// numbers from the given arrays
int distinctSum(int arr1[], int arr2[], int m, int n)
{
    sieve();
 
    // Set to store distinct sums
    set<int, greater<int> > sumSet;
 
    for (int i = 0; i < m; i++)
        for (int j = 0; j < n; j++)
            if (prime[arr1[i]] && prime[arr2[j]])
                sumSet.insert(arr1[i] + arr2[j]);
 
    return sumSet.size();
}
 
// Driver code
int main()
{
    int arr1[] = { 2, 3 };
    int arr2[] = { 2, 2, 4, 7 };
    int m = sizeof(arr1) / sizeof(arr1[0]);
    int n = sizeof(arr2) / sizeof(arr2[0]);
    cout << distinctSum(arr1, arr2, m, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int MAX = 1000000;
 
static boolean []prime = new boolean[MAX + 1];
static void sieve()
{
    Arrays.fill(prime, true);
    prime[0] = prime[1] = false;
    for (int p = 2; p * p <= MAX; p++)
    {
        if (prime[p] == true)
        {
            for (int i = p * p;
                     i <= MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the distinct sums
// that can be obtained by adding prime
// numbers from the given arrays
static int distinctSum(int arr1[],
                       int arr2[],
                       int m, int n)
{
    sieve();
 
    // Set to store distinct sums
    Set<Integer> sumSet = new HashSet<Integer>();
 
    for (int i = 0; i < m; i++)
        for (int j = 0; j < n; j++)
            if (prime[arr1[i]] && prime[arr2[j]])
                sumSet.add(arr1[i] + arr2[j]);
 
    return sumSet.size();
}
 
// Driver code
public static void main(String[] args)
{
    int arr1[] = { 2, 3 };
    int arr2[] = { 2, 2, 4, 7 };
    int m = arr1.length;
    int n = arr2.length;
    System.out.println(distinctSum(arr1, arr2, m, n));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
MAX = 1000000
 
prime = [True for i in range(MAX + 1)]
 
def sieve():
 
    prime[0], prime[1] = False, False
 
    for p in range(2, MAX + 1):
        if p * p > MAX:
            break
        if (prime[p] == True):
            for i in range(2 * p, MAX + 1, p):
                prime[i] = False
 
# Function to return the distinct sums
# that can be obtained by adding prime
# numbers from the given arrays
def distinctSum(arr1, arr2, m, n):
    sieve()
 
    # Set to store distinct sums
    sumSet = dict()
 
    for i in range(m):
        for j in range(n):
            if (prime[arr1[i]] and
                prime[arr2[j]]):
                sumSet[arr1[i] + arr2[j]] = 1
 
    return len(sumSet)
 
# Driver code
arr1 = [2, 3 ]
arr2 = [2, 2, 4, 7 ]
m = len(arr1)
n = len(arr2)
print(distinctSum(arr1, arr2, m, n))
 
# This code is contributed by mohit kumar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
static int MAX = 1000000;
 
static bool []prime = new bool[MAX + 1];
static void sieve()
{
    for (int i = 0; i < MAX + 1; i++)
        prime[i] = true;
    prime[0] = prime[1] = false;
    for (int p = 2; p * p <= MAX; p++)
    {
        if (prime[p] == true)
        {
            for (int i = p * p;
                     i <= MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the distinct sums
// that can be obtained by adding prime
// numbers from the given arrays
static int distinctSum(int []arr1,
                       int []arr2,
                       int m, int n)
{
    sieve();
 
    // Set to store distinct sums
    HashSet<int> sumSet = new HashSet<int>();
 
    for (int i = 0; i < m; i++)
        for (int j = 0; j < n; j++)
            if (prime[arr1[i]] && prime[arr2[j]])
                sumSet.Add(arr1[i] + arr2[j]);
 
    return sumSet.Count;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr1 = { 2, 3 };
    int []arr2 = { 2, 2, 4, 7 };
    int m = arr1.Length;
    int n = arr2.Length;
    Console.WriteLine(distinctSum(arr1, arr2, m, n));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript implementation of the approach
 
 
let MAX = 1000000
 
let prime = new Array(MAX);
 
function sieve() {
    prime.fill(true)
    prime[0] = prime[1] = false;
    for (let p = 2; p * p <= MAX; p++) {
        if (prime[p] == true) {
            for (let i = p * p; i <= MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the distinct sums
// that can be obtained by adding prime
// numbers from the given arrays
function distinctSum(arr1, arr2, m, n) {
    sieve();
 
    // Set to store distinct sums
    let sumSet = new Set();
 
    for (let i = 0; i < m; i++)
        for (let j = 0; j < n; j++)
            if (prime[arr1[i]] && prime[arr2[j]])
                sumSet.add(arr1[i] + arr2[j]);
 
    return sumSet.size;
}
 
// Driver code
 
let arr1 = [2, 3];
let arr2 = [2, 2, 4, 7];
let m = arr1.length;
let n = arr2.length;
document.write(distinctSum(arr1, arr2, m, n));
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output: 

4

 

Time Complexity : O(N * M * log (N * M) + MAX * log(MAX) )

Auxiliary Space: O(MAX + N * M) 

Last Updated :
06 Aug, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments