Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of Distinct Substrings occurring consecutively in a given String

Count of Distinct Substrings occurring consecutively in a given String

Given a string str, the task is to find the number of distinct substrings that are placed consecutively in the given string.

Examples: 

Input: str = “neveropenneveropen” 
Output:
Explanation: 
neveropenneveropenforneveropen -> {“neveropen”} 
geeksgeeksforgeeks -> {“e”} 
Only one consecutive occurrence of “e” is considered. 
Therefore two distinct substrings {“neveropen”, “e”} occur consecutively in the string. 
Therefore, the answer is 2.

Input: s = “neveropen” 
Output:
Explanation: 
geeksneveropen -> {“e”, “e”} 
Only one substring {“e”} occurs consecutively in the string. 
 

Naive Approach: 
The simplest approach is to generate all possible substrings of the given string, and for each substring, find the count of substrings in the given occurring consecutively in the string. Finally, print the count. 

Time Complexity: O(N3)
Auxiliary Space: O(N)

Efficient Approach: 
To optimize the above approach, the idea is to use Dynamic Programming
Follow the steps below to solve the problem:

  1. If the length of the string does not exceed 1, then it is not possible to find any such consecutively placed similar substrings. So return 0 as the count.
  2. Otherwise, initialize a memoization table dp[] of dimensions (N+1 * N+1) which is initialized to 0.
  3. Initialize an unordered_set to store the distinct substrings placed consecutively.
  4. Iterate from the end of the string.
  5. While traversing the string if any repeating character is found, then dp[i][j] will be determined considering the previously computed dp value i.e., count of identical substrings up to dp[i+1][j+1] characters and including the current character.
  6. If the character is not similar then, dp[i][j] will be filled with 0.
  7. Similar substrings are consecutively placed together without any other characters and they will be the same for at most (j – i) characters. Hence, for valid substrings, dp[i][j] value must be greater than (j – i). Store those substrings in unordered_set which appears the maximum number of times consecutively.
  8. Finally, return the size of the unordered_set as the count of distinct substrings placed consecutively.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the distinct substrings
// placed consecutively in the given string
int distinctSimilarSubstrings(string str)
{
    // Length of the string
    int n = str.size();
 
    // If length of the string
    // does not exceed 1
    if (n <= 1) {
        return 0;
    }
 
    // Initialize a DP-table
    vector<vector<int> > dp(
        n + 1, vector<int>(n + 1, 0));
 
    // Stores the distinct substring
    unordered_set<string> substrings;
 
    // Iterate from end of the string
    for (int j = n - 1; j >= 0; j--) {
 
        // Iterate backward until
        // dp table is all computed
        for (int i = j - 1; i >= 0; i--) {
 
            // If character at i-th index is
            // same as character at j-th index
            if (str[i] == str[j]) {
 
                // Update dp[i][j] based on
                // previously computed value
                dp[i][j] = dp[i + 1][j + 1] + 1;
            }
 
            // Otherwise
            else {
 
                dp[i][j] = 0;
            }
 
            // Condition for consecutively
            // placed similar substring
            if (dp[i][j] >= j - i) {
 
                substrings.insert(
                    str.substr(i, j - i));
            }
        }
    }
 
    // Return the count
    return substrings.size();
}
 
// Driver Code
int main()
{
    string str = "neveropenneveropen";
 
    cout << distinctSimilarSubstrings(str);
    return 0;
}


Java




// Java program to implement
// the above approach
import java.io.*;
import java.util.ArrayList;
 
class GFG{
 
// Function to count the distinct substrings
// placed consecutively in the given string    
static int distinctSimilarSubstrings(String str)
{
     
    // Length of the string
    int n = str.length();
     
    // If length of the string
    // does not exceed 1
    if (n <= 1)
        return 0;
         
    // Initialize a DP-table
    long dp[][] = new long[n + 1][n + 1];
     
    // Declaring ArrayList to store strings
    ArrayList<String> list = new ArrayList<String>();
 
    // Iterate from end of the string
    for(int j = n - 1; j >= 0; j--)
    {
         
        // Iterate backward until
        // dp table is all computed
        for(int i = j - 1; i >= 0; i--)
        {
             
            // If character at i-th index is
            // same as character at j-th index
            if (str.charAt(i) == str.charAt(j))
            {
                 
                // Update dp[i][j] based on
                // previously computed value
                dp[i][j] = dp[i + 1][j + 1] + 1;
            }
             
            // Otherwise
            else
            {
                dp[i][j] = 0;
            }
 
            // Condition for consecutively
            // placed similar substring
            if (dp[i][j] >= j - i)
            {
                list.add(str.substring(j - i, i));
            }
        }
    }
     
    // Return the count
    return list.size();
}
 
// Driver Code
public static void main(String[] args)
{
    String str = "neveropen";
     
    System.out.println(distinctSimilarSubstrings(str));
}
}
 
// This code is contributed by user_00


Python3




# Python3 program to implement
# the above approach
 
# Function to count the distinct substrings
# placed consecutively in the given string
def distinctSimilarSubstrings(str):
 
    # Length of the string
    n = len(str)
 
    # If length of the string
    # does not exceed 1
    if(n <= 1):
        return 0
 
    # Initialize a DP-table
    dp = [[0 for x in range(n + 1)]
             for y in range(n + 1)]
 
    # Stores the distinct substring
    substrings = set()
 
    # Iterate from end of the string
    for j in range(n - 1, -1, -1):
 
        # Iterate backward until
        # dp table is all computed
        for i in range(j - 1, -1, -1):
 
            # If character at i-th index is
            # same as character at j-th index
            if(str[i] == str[j]):
 
                # Update dp[i][j] based on
                # previously computed value
                dp[i][j] = dp[i + 1][j + 1] + 1
 
            # Otherwise
            else:
                dp[i][j] = 0
 
            # Condition for consecutively
            # placed similar substring
            if(dp[i][j] >= j - i):
                substrings.add(str[i : j - i])
 
    # Return the count
    return len(substrings)
 
# Driver Code
str = "neveropenneveropen"
 
# Function call
print(distinctSimilarSubstrings(str))
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to count the distinct substrings
    // placed consecutively in the given string    
    static int distinctSimilarSubstrings(string str)
    {
          
        // Length of the string
        int n = str.Length;
          
        // If length of the string
        // does not exceed 1
        if (n <= 1)
            return 0;
              
        // Initialize a DP-table
        long[,] dp = new long[n + 1, n + 1];
          
        // Declaring ArrayList to store strings
        List<string> list = new List<string>();
      
        // Iterate from end of the string
        for(int j = n - 1; j >= 0; j--)
        {
              
            // Iterate backward until
            // dp table is all computed
            for(int i = j - 1; i >= 0; i--)
            {
                  
                // If character at i-th index is
                // same as character at j-th index
                if (str[i] == str[j])
                {
                      
                    // Update dp[i][j] based on
                    // previously computed value
                    dp[i, j] = dp[i + 1, j + 1] + 1;
                }
                  
                // Otherwise
                else
                {
                    dp[i, j] = 0;
                }
      
                // Condition for consecutively
                // placed similar substring
                if (dp[i, j] >= j - i)
                {
                    list.Add(str.Substring(i, j - i));
                }
            }
        }
          
        // Return the count
        return list.Count;
    }
 
  // Driver code
  static void Main()
  {
    string str = "neveropen";    
    Console.WriteLine(distinctSimilarSubstrings(str));
  }
}
 
// This code is contributed by divyesh072019


Javascript




<script>
 
// Javascript Program to implement
// the above approach
 
// Function to count the distinct substrings
// placed consecutively in the given string
function distinctSimilarSubstrings(str)
{
    // Length of the string
    var n = str.length;
 
    // If length of the string
    // does not exceed 1
    if (n <= 1) {
        return 0;
    }
 
    // Initialize a DP-table
    var dp = Array.from(Array(n+1), ()=>Array(n+1).fill(0));
 
    // Stores the distinct substring
    var substrings = new Set();
 
    // Iterate from end of the string
    for (var j = n - 1; j >= 0; j--) {
 
        // Iterate backward until
        // dp table is all computed
        for (var i = j - 1; i >= 0; i--) {
 
            // If character at i-th index is
            // same as character at j-th index
            if (str[i] == str[j]) {
 
                // Update dp[i][j] based on
                // previously computed value
                dp[i][j] = dp[i + 1][j + 1] + 1;
            }
 
            // Otherwise
            else {
 
                dp[i][j] = 0;
            }
 
            // Condition for consecutively
            // placed similar substring
            if (dp[i][j] >= j - i) {
 
                substrings.add(str.substring(i, j));
            }
        }
    }
 
    // Return the count
    return substrings.size;
}
 
// Driver Code
var str = "neveropenneveropen";
document.write( distinctSimilarSubstrings(str));
 
// This code is contributed by noob2000.
</script>


Output: 

2

 

Time Complexity: O(N^2) 
Auxiliary Space: O(N^2)

Efficient approach: Space optimization

In previous approach the dp[i][j] is depend upon the current and previous row of 2D matrix. So to optimize space we use two vectors curr and prev that keep track of current and previous row of DP.

Implementation Steps:

  • Initialize a vectors prev of size N+1 to keep track of only previous row of Dp with 0.
  • Now iterative over subproblems and get the current computation.
  • While Initialize a vectors curr of size N+1 to keep track of only current row of Dp with 0.
  • Now compute the current value by the help of prev vector and store that value in curr.
  • After every iteration store values of curr vector in prev vector for further iterration.
  • At last create substring and return its size.

Implementation:

C++




// C++ program for above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the distinct substrings
// placed consecutively in the given string
int distinctSimilarSubstrings(string str)
{
    // Length of the string
    int n = str.size();
 
    // If length of the string
    // does not exceed 1
    if (n <= 1) {
        return 0;
    }
 
    // Initialize a previous row of dp-table
    vector<int> prev(n + 1, 0);
 
    // Stores the count of distinct substring
    unordered_map<string, int> substrings;
 
    // Iterate from end of the string
    for (int j = n - 1; j >= 0; j--) {
 
        // Initialize the current row of dp-table
        vector<int> cur(n + 1, 0);
 
        // Iterate backward until
        // dp table is all computed
        for (int i = j - 1; i >= 0; i--) {
 
            // If character at i-th index is
            // same as character at j-th index
            if (str[i] == str[j]) {
 
                // Update cur[i] based on
                // previously computed value
                cur[i] = prev[i + 1] + 1;
            }
 
            // Otherwise
            else {
 
                cur[i] = 0;
            }
 
            // Condition for consecutively
            // placed similar substring
            if (cur[i] >= j - i) {
 
                substrings[str.substr(i, j - i)]++;
            }
        }
 
        // Copy the current row to previous row
        prev = cur;
    }
 
    // Return the count
    return substrings.size();
}
 
// Driver Code
int main()
{
    string str = "neveropenneveropen";
 
    cout << distinctSimilarSubstrings(str);
    return 0;
}
// this code is contributed by bhardwajji


Java




import java.util.*;
 
public class Main {
 
  // Function to count the distinct substrings
  // placed consecutively in the given string
  public static int distinctSimilarSubstrings(String str)
  {
 
    // Length of the string
    int n = str.length();
 
    // If length of the string does not exceed 1
    if (n <= 1) {
      return 0;
    }
 
    // Initialize a previous row of dp-table
    int[] prev = new int[n + 1];
 
    // Stores the count of distinct substring
    HashMap<String, Integer> substrings = new HashMap<>();
 
    // Iterate from end of the string
    for (int j = n - 1; j >= 0; j--) {
      // Initialize the current row of dp-table
      int[] cur = new int[n + 1];
 
      // Iterate backward until dp table is all computed
      for (int i = j - 1; i >= 0; i--) {
        // If character at i-th index is same as character at j-th index
        if (str.charAt(i) == str.charAt(j)) {
          // Update cur[i] based on previously computed value
          cur[i] = prev[i + 1] + 1;
        }
        // Otherwise
        else {
          cur[i] = 0;
        }
 
        // Condition for consecutively placed similar substring
        if (cur[i] >= j - i) {
          substrings.merge(str.substring(i, j), 1, Integer::sum);
        }
      }
      // Copy the current row to previous row
      prev = cur;
    }
    // Return the count
    return substrings.size();
  }
 
  // Driver Code
  public static void main(String[] args) {
    String str = "neveropenneveropen";
    System.out.println(distinctSimilarSubstrings(str));
  }
}


Javascript




// Function to count the distinct substrings
// placed consecutively in the given string
function distinctSimilarSubstrings(str) {
    // Length of the string
    let n = str.length;
 
    // If length of the string does not exceed 1
    if (n <= 1) {
        return 0;
    }
 
    // Initialize a previous row of dp-table
    let prev = new Array(n + 1).fill(0);
 
    // Stores the count of distinct substring
    let substrings = {};
 
    // Iterate from end of the string
    for (let j = n - 1; j >= 0; j--) {
        // Initialize the current row of dp-table
        let cur = new Array(n + 1).fill(0);
 
        // Iterate backward until dp table is all computed
        for (let i = j - 1; i >= 0; i--) {
            // If character at i-th index is same as character at j-th index
            if (str[i] == str[j]) {
                // Update cur[i] based on previously computed value
                cur[i] = prev[i + 1] + 1;
            }
            // Otherwise
            else {
                cur[i] = 0;
            }
 
            // Condition for consecutively placed similar substring
            if (cur[i] >= j - i) {
                substrings[str.substr(i, j - i)]++;
            }
        }
 
        // Copy the current row to previous row
        prev = cur;
    }
 
    // Return the count
    return Object.keys(substrings).length;
}
 
// Driver Code
let str = "neveropenneveropen";
 
console.log(distinctSimilarSubstrings(str));


Output

2

Time Complexity: O(N^2) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments